AI in Industry
BASIC DATA
course listing
A - main register
course code
EMT0250
course title in Estonian
Tehisintellekt tööstuses
course title in English
AI in Industry
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
MARM06/25
no
Structural units teaching the course
EM - Department of Mechanical and Industrial Engineering
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Anda ülevaade tehisintellekti ja masinõppe
põhiprintsiipidest ning arendada oskusi nende rakendamiseks tootmises. Üliõpilased omandavad
AI-põhiste mudelite koostamise ja rakendamise
oskused ennustavaks hoolduseks, defektide
tuvastamiseks, tootmise optimeerimiseks ja
riskianalüüsiks.
course aims in English
Students will gain an understanding of the
fundamental principles of artificial intelligence (AI)
and machine learning (ML), along with the skills
to apply these technologies in the manufacturing
sector. They will learn to design and implement
AI-based models and algorithms for predictive
maintenance, defect detection, production planning
and optimization, risk analysis.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- teab tehisintellekti ja masinõppe põhilisi meetodeid ning nende rakendamist kaasaegses tootmises;
- analüüsib ja lahendab tootmises esinevaid probleeme juhendatud ning juhendamata masinõppe meetodite abil;
- kasutab masinõppe tööriistu (nt MATLAB, Python, TensorFlow) praktiliste probleemide lahendamiseks, näiteks ennustava hoolduse või defektide tuvastamiseks;
- oskab rakendada globaalse optimeerimise meetodeid tootmisprotsesside efektiivsuse tõstmiseks;
- kasutab multikriteriaalseid otsustusmeetodeid praktiliste lahenduste väljatöötamisel (riskide hindamine, võtmenäitajate prioriseerimine, protsesside valik, jm.);
- teab tehisintellekti rakendamise eetilisi aspekte.
learning outcomes in the course in Eng.
After completing this course, the student:
- knows the fundamental methods of artificial intelligence and machine learning, and their application in modern manufacturing;
- analyzes and solves problems in manufacturing using supervised and unsupervised machine learning methods;
- uses machine learning tools (e.g., MATLAB, Python, TensorFlow) to solve practical problems such as predictive maintenance or defect detection;
- is able to apply global optimization methods to enhance the efficiency of manufacturing processes;
- applies multi-criteria decision-making methods to develop practical solutions (e.g., risk assessment, prioritization of key indicators, process selection, etc.);
- knows the ethical aspects of AI implementation.
brief description of the course in Estonian
Õppeaine annab tervikliku ülevaate tehisintellekti rakendustest kaasaegses tootmises. Käsitletakse AI meetodeid ja tööriistu, sealhulgas masinõpet, süvaõpet ja tehisnärvivõrke, ning tarkvarasid, nagu MATLAB, Python ja TensorFlow. Masinõppe teemadesse kuuluvad juhendatud ja juhendamata õppemeetodid, sh otsustuspuud, tugivektorklassifitseerimine, regressioon ning klasterdamine. Õpitakse rakendama globaalse optimeerimise ja multikriteriaalsete otsustusmeetodite algoritme. Praktiliste juhtumuuringute kaudu õpitakse tehisintellekti rakendamist ennetavaks hoolduseks, toodete ja tootmisprotsesside optimeerimiseks ning riskide analüüsiks. Kursuses käsitletakse eetiliste aspektide hindamist.
brief description of the course in English
The course provides a comprehensive overview of artificial intelligence (AI) applications in modern manufacturing. It covers AI methods and tools, including machine learning, deep learning and artificial neural networks, as well as software such as MATLAB, Python, and TensorFlow. Topics in machine learning include supervised and unsupervised learning methods, such as decision trees, support vector classification, regression, and clustering. The course also teaches the application of global optimization and multi-criteria decision-making algorithms.Through practical case studies, students will learn how to apply AI for predictive maintenance, product and production process optimization, risk assessment, and analysis. The course also addresses the evaluation of ethical considerations.
type of assessment in Estonian
Teoreetiline test: 40%.
Praktiline projekt: 40%.
Osalemine ja kodutööd: 20%.
type of assessment in English
Theoretical test: 40%.
Practical project: 40%.
Participation and homework: 20%.
independent study in Estonian
AI algoritmide koostamine ja rakendamine.
Juhtumuuringute läbiviimine.
Multikriteriaalsete otsustusmeetodite rakendamine
riskide analüüsiks ja võtmeväärtuste prioriseerimiseks.
independent study in English
Development and application of AI algorithms
Implementation of use-cases.
Application of mulricriteria decision making methods
for risk analysis and priorization of the
key performance indicators.
study literature
George Chryssolouris , Kosmas Alexopoulos , Zoi Arkouli, 2023, A Perspective on Artificial Intelligence in Manufacturing.
Edited by John Soldatos, 2024, Artificial Intelligence in Manufacturing: Enabling Intelligent, Flexible and Cost-Effective Production Through AI (Open access).
Edited by Jaydip Sen, Sidra Methab, 2021, Machine Learning - Algorithms, Models and Applications (Artificial Intelligence)
Edited by Masoud Soroush, Richard D Braatz, 2024, Artificial Intelligence in Manufacturing: Applications and Case Studies
Edited by Kaushik Kumar, Divya Zindani, J. Paulo Davim, 2024, Artificial Intelligence in Mechanical and Industrial Engineering).
Edited by by Ganesh M. Kakandikar, Dinesh G. Thakur, 2020, Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems.
Edited by Kim Phuc Tran, 2023, Artificial Intelligence for Smart Manufacturing: Methods, Applications, and Challenges.
Alaa Khamis, 2024, Optimization Algorithms: AI Techniques for Design, Planning, and Control Problems.
Anand J. Kulkarni and Suresh Chandra Satapathy, 2020, Optimization in Machine Learning and Applications.
Vadim Smolyakov, 2024, Machine Learning Algorithms in Depth.
Kejriwal, 2022, Artificial Intelligence for Industries of the Future.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
16.0
practices
2.0
practices
16.0
exercises
0.0
exercises
0.0
lecturer in charge
Jüri Majak, täisprofessor tenuuris (EM - mehaanika ja tööstustehnika instituut)
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
Course-teacher pairs of the corresponding version are missing!
Course description in Estonian
Course description in English