course aims in Estonian
Aine eesmärk on:
- süvendada ettevalmistust toodete ja (tootmis)protsesside modelleerimise alal, sh anda üliõpilastele regressiooni analüüsi, närvivõrkude jt mudelite koostamise meetodite praktilise rakendamise oskusi;
- koostada optimeerimismudeleid (lineaarne ja mittelineaarne planeerimine, täisarvuline planeerimine jt planeerimise meetodid),
- koostada ja lahendada globaalseid optimeerimise mudelieid;
- analüüsida optimeerimismudeleid ja lahendeid;
- tutvustada kaasaegseid matemaatilisi mudeleid ja meetodeid eesmärgiga rakendada neid iseseisvaks teadus- ja arendustööks, sh teadusuuringute ja projektide läbiviimiseks.
course aims in English
The aim of this course is to provide knowledge and experience in:
- modeling and simulation of structures, products and manufacturing processes including regression, kriging, artificial neural network, etc. response modeling techniques;
- development of optimization models and tools (linear, quadrat, and general non-linear planning, integer and mixed integer planning);
- global optimization techniques, model development and solution methods;
- complexity classes of the algorithms;
- analysis of the optimization models and solutions, sensitivity, robustness, accuracy and
- to introduce recent trends in development and application of optimization methods and techniques, also software tools used in research and development.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- arendab ja analüüsib konstruktsioonide, toodete ja protsesside mudeleid, kasutades regressioonanalüüsi ning närvivõrkude modelleerimise meetodeid ja instrumente;
- koostab, analüüsib ja rakendab praktikas matemaatilise planeerimise, sh lineaarse planeerimise, mittelineaarse planeerimise, täisarvulise planeerimise jt mudeleid;
- hindab algoritmide keerukust ja võrdleb neid;
- hindab mudelite täpsust simuleerimise teel, analüüsib mudeli parameetrite juhuslikkuse ja varieeruvuse mõju;
- projekteerib stohhastilistel lahendusmeetoditel phinevaid multikriteriaalsete ja hierarhiliste ülesannete lahendusi, analüüsib ja hindab täpsust, tundlikkust.
learning outcomes in the course in Eng.
After completing this course the student:
- develops and analyses models for structures, products and manufacturing processes applying regression, kriging, artificial neural network, etc. techniques;
- develops, analyses and applies practically linear and non-linear planning, integer and mixed-integer planning models;
- estimates the complexity of algorithms, compares and selects them;
- estimates the accuracy of the models, effect of parameters variation, robustness;
- develops stochastic approach based solutions for multicriteria and hierarchic optimization problems.
brief description of the course in Estonian
Klassikalised variatsioonimeetodid ja nende rakendamine konstruktsioonide, toodete ja protsesside projekteerimisel. Matemaatilise planeerimise meetodid (lineaarne, mittelineaarne, täisarvuline ja dünaamiline planeerimine) tootearenduses ja tootmise planeerimises. Optimaalsete projekteerimismeetodite usaldatavuse hindamine ja selle tõstmise teed. Kitsenduste käsitlemine optimeerimisülesannetes. Optimaalsuse tarvilikud tingimused. Multikriteriaalsed ja hierarhilised optimeerimise tehnikad ja algoritmid ning nende rakendamine insenerirakendustes.
brief description of the course in English
Traditional and global optimization methods and techniques, their application in engineering design. Linear and nonlinear planning, integer and mixed integer planning, applications in product planning and development. Constraint optimization. Necessary optimality conditions. Response modeling. Multicriteria and hierarchic optimization methods and technics, their application in engineering design. Evaluation of optimization models.
type of assessment in Estonian
HINDAMISMEETOD
Kodutööd: hinnatakse pärast esitlust ja diskussiooni õppejõuga
1. KodT1. Kirjeldava statistika mudelid. Toote (protsessi) mudeli koostamine.
2. KodT2. Vastavuse pinna modelleerimine. Regressiooni, ANN, jt. mudelid.
3. KodT3. Traditsionaalne ja globaalne optimeerimine Hübriidalgoritmi koostamine. Multikriteriaalse optimeerimisülesande lahendamine.
Eksam. Eksam koosneb kodutööde diskussioonist ja kursuse valdkonna mõistete, terminate, algoritmide ja meetodite tööpõhimõtete selgitusest. Hindamine koos kodutöödega
type of assessment in English
Homeworks and exam. Evaluated after oral presentation and discussion:
1.Homewrok1: Descriptive statistics. Development of product (process) model
2. Homewrok2: Response modelling. Design of Experiment. Development of regression, ANN, etc. models.
3. Homewrok3: Traditional and global optimization. Development of hybrid algorithm. Solution of multicriteria optimization problem.
4. Exam include discussion of homeworks, explanations of terms, working principles of optimization methods and algorithms coved by course. Assessment together with homework.
independent study in Estonian
-
independent study in English
-
study literature
1. Sioshansi, Ramteen, Conejo, Antonio J., Optimization in Engineering. Models and Algorithms, 2017, Springer.
2. Pardalos, Panos M., Žilinskas, Antanas, Žilinskas, Julius, Non-Convex Multi-Objective Optimization, 2017, Springer.
3. Editors: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C., Evolutionary Multi-Criterion Optimization, 2017, Springer.
4. Edited by: Gade Pandu Rangaiah. Stochastic Global Optimization, 2010, World Scientific.
6. Arnold Neumaier, Introduction to Global Optimization, https://www.mat.univie.ac.at/~neum/glopt/intro.html
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):