course aims in Estonian
Aine eesmärk on õpetada, kuidas rakendatakse tehisintellekti ja masinõppe (ML) tehnikaid küberohtude tuvastamiseks, ennetamiseks ja neile reageerimiseks, ning mõista tehisintellektisüsteemide turvaväljakutseid.
course aims in English
The aim of this course is to learn how AI and Machine Learning (ML) techniques are applied to detect, prevent, and respond to cyber threats, as well as understand the security challenges of AI systems.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- selgitab tehisintellekti ja masinõppe põhimõisteid ning nende seoseid küberturvalisusega;
- rakendab tehisintellekti ja masinõppe meetodeid ohtude tuvastamiseks ning analüüsimiseks, sealhulgas anomaaliate tuvastamine, kahjurvara klassifitseerimine ja õngitsuskatsete tuvastamine;
- paigaldab ja kasutab TI-põhiseid tööriistu ohujahiks, intsidentidele reageerimiseks ja turvatoimingute automatiseerimisel;
- analüüsib ja oskab kaitsta TI süsteeme vaenulike rünnakute eest ning mõista TI omaseid turvariske;
- hindab TI kasutuselevõtu eetilisi ja privaatsuse tagamise aspekte.
learning outcomes in the course in Eng.
By the end of the course, students will be able to:
- explain fundamental concepts of AI and ML as they relate to cybersecurity;
- apply ML and AI techniques to identify and analyze security threats, including anomaly detection, malware classification, and phishing detection;
- setup and utilize AI-driven tools for threat hunting, incident response, and automation in security operations;
- analyze and defend against adversarial attacks on AI systems and understand security risks unique to AI;
- evaluate ethical and privacy considerations in the deployment of AI.
brief description of the course in Estonian
Kursus keskendub tehisintellekti rollile küberturbes. Kombineeritakse TI teoreetilised alused, praktilise programmeerimise ja TI turvalisuse laborid, keskendudes programmeerimisele ja küberturbes tehisintellekti rakendamisele.
- tehisintellekti, masinõppe ja küberturvalisuse põhialused ja ajalugu;
- masinõppe meetodid (juhendatud ja juhendamata algoritmid) ohutuvastuses;
- sügavõpe;
- suurte keelemudelite (LLM) tutvustus;
- anomaaliate tuvastamine ja ohujaht, intsidentidele reageerimise automatiseerimine TI ja turvalisuse orkestreerimise, automatiseerimise ja reageerimise (SOAR) abil;
- AI süsteemide ründed ja masinõppe mudelite turvalisus;
- kahjurvara klassifitseerimine ja kinnisründeohtude tuvastamine;
- tehisaru eetilisuse ja privaatsuse määrused ning regulatsioonid;
- autonoomsed küberturvalisuse agendid.
brief description of the course in English
This course explores the Artificial Intelligence (AI) role in cybersecurity. The course combines theoretical foundations, practical programming and AI security labs. Focus is in programming and applying AI in cybersecurity.
- fundamentals of AI, ML and cybersecurity. History of AI and ML;
- ML methods (supervised and unsupervised algorithms) in threat detection;
- deep learning;
- large language models (LLM);
- anomaly detection and threat hunting, automating incident response with AI and security orchestration, automation, and response (SOAR);
- adversarial attacks on AI systems and security of ML models;
- malware classification and advanced threat detection;
- ethical AI, privacy and legal issues;
- autonomous cyber security agents.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):