Logic and Discrete Mathematics
BASIC DATA
course listing
A - main register
course code
ICY0001
course title in Estonian
Loogika ja diskreetne matemaatika
course title in English
Logic and Discrete Mathematics
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
IVSB17/25
yes
Structural units teaching the course
IC - IT College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Kursuse eesmärk on tutvustada matemaatilist aparatuuri ning õpetada rakendama matemaatilist abstraktsiooni, mida kasutatakse arvutiteaduses, algoritmianalüüsis ja krüptograafias. Kursusel keskendutakse hulgateooria, kombinatoorika, tõenäosusteooria ja graafiteooria elementidele. Põhilised teemad: Loendamine: permutatsioonid, kombinatsioonid, variatsioonid. Matemaatiline induktsioon. Fibonacci arvud. Binoomkordajad ja Pascali kolmnurk. Kombinatoorne tõenäosus. Graafiteooria elemente: puud ja graafid, hamiltoniaan, kahealuselised graafid, Euleri valem. Graafide ja kaartide värvimine, neljavärviprobleem.
course aims in English
This course is designed to introduce students to the techniques, algorithms, and reasoning processes involved in the study of discrete mathematical structures. Students will be introduced to set theory, deductive and inductive reasoning, elementary counting techniques, ordering, functional and equivalence relations, graphs, and trees. The aim is to give them knowledge and skills that would enable to use the basic methods of discrete mathematics in subsequent courses, in the design and analysis of algorithms, computability theory, software engineering, and computer systems.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- oskab põhjendada matemaatiliselt arvuti algoritmides ja süsteemides kasutatavaid põhilisi andmetüüpe ja struktuure;
- kasutab diskreetse matemaatika teadmisi ja meetodeid erialases suhtlemises ja ülesannete lahendamisel;
- kasutab põhilisi loendamisalgoritme rakenduslike probleemide lahendamisel ja tõestab matemaatilisi väiteid induktiivse arvutuskäigu abil;
- tõestab matemaatilisi väiteid induktiivse arvutuskäigu abil,
- selgitab välja graafide ja puude põhiomadused ning kasutab neid mõisteid lihtsate rakenduste modelleerimiseks,
- kasutab matemaatilist teksti analüüsimisel ja aru saamisel.
learning outcomes in the course in Eng.
After completing this course the student:
- can reason mathematically about basic data types and structures (such as numbers, sets, graphs, and trees) used in computer algorithms and systems,
- demonstrates an understanding of the basic concepts of set theory;
- applies fundamental counting algorithms to solve applied problems;
- proves mathematical statements by means of inductive reasoning;
- identifies the basic properties of graphs and trees and uses these concepts to model simple applications;
- communicates mathematical ideas in both written and oral form.
brief description of the course in Estonian
Diskreetne matemaatika – selle tehnikad, algoritmid ja põhistruktuurid (graafikud, puud jne). Praktiliste probleemide lahendamine diskreetse matemaatika meetoditega. Loendamine: permutatsioonid, kombinatsioonid, variatsioonid. Matemaatiline induktsioon. Fibonacci arvud. Binoomkordajad ja Pascali kolmnurk. Kombinatoorne tõenäosus. Graafiteooria elemente: puud ja graafid, hamiltoniaan, kahealuselised graafid, Euleri valem. Graafide ja kaartide värvimine, neljavärviprobleem.
brief description of the course in English
Discrete mathematics - its techniques, algorithms and basic structures (graphs, trees etc). Solving of practical problems with the discrete mathematics methods.Topics to be covered include elementary set theory considering basic definitions and set operations, the power set and Cartesian products basic connectives in propositional logic and their properties with emphasis on some of the methods of proving mathematical results the role of quantifiers in predicate logic and in infinitely large domain sets mathematical induction binary relations and, in particular, the equivalence relation partial order relations basic counting techniques, combinations, permutations binomial coefficients, Pascal’s triangle graph, vertices, edges, paths, cycles Eulerian and Hamiltonian graphs basic definitions and properties of trees planar graphs traveling-salesman problem graph coloring.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Course homepage: http://www.cs.ioc.ee/ITKDM/
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 spring
Tiina Zingel, IC - IT College
English
    ICY0001_assessment_criteria.pdf 
    display more
    2024/2025 spring
    Tiina Zingel, IC - IT College
    English
      ICY0001_assessment_criteria.pdf 
      2023/2024 spring
      Tiina Zingel, IC - IT College
      English
        2022/2023 spring
        Tiina Zingel, IC - IT College
        English
          Extended syllabus LDM.pdf 
          2021/2022 autumn
          Margarita Matson, IT - Department of Software Science
          English
            ICY0001_assessment_criteria.pdf 
            2020/2021 autumn
            Margarita Matson, IT - Department of Software Science
            English
              ICY0001_assessment_criteria.pdf 
              2019/2020 autumn
              Margarita Matson, IT - Department of Software Science
              English
                ICY0001_assessment_criteria.pdf 
                2018/2019 autumn
                Margarita Matson, IT - Department of Software Science
                English
                  ICY0001_assessment_criteria.pdf 
                  2017/2018 autumn
                  Margarita Matson, IT - Department of Software Science
                  English
                    ICY0001_assessment_criteria.pdf 
                    Course description in Estonian
                    Course description in English