Deep Learning in Healthcare
BASIC DATA
course listing
A - main register
course code
IHB0002
course title in Estonian
Sügavõpe tervishoius
course title in English
Deep Learning in Healthcare
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
YVEM09/25
no
Structural units teaching the course
IH - Department of Health Technologies
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Õppeaine eesmärgiks on:
- arendada praktiliste oskusi: varustada õpilasi konkreetsete oskustega, et rakendada sügavõppe tehnikaid meditsiinilistes stsenaariumides, nagu meditsiinilised pildid ja tekstiandmed;
- lõimida teoreetilist ja praktilist teadmist: tagada, et õpilased mõistavad sügavõppe aluspõhimõtteid ja suudavad neid teadmisi reaalsetes meditsiinikeskkondades rakendada;
- mõista tervishoiu väljakutseid: anda ülevaade tehisintellekti rakendusega tervishoiusektoris seotud väljakutsetest, nagu puudulike andmetega tegelemine, tulemuste interpreteerimine, eetilised küsimused, jm;
- edendada innovatsiooni tervishoius: innustada õpilasi uurima ja arendama uusi AI-põhiseid lahendusi, mis aitaksid parandada patsiendihoolduse kvaliteeti ja tõhusust;
- rõhutada eetikat ja vastutustundlikkust: käsitleda tehisintellekti rakendamise eetilisi kaalutlusi tervishoius ja rõhutada vastutustundliku ja kaasava tehnoloogia vajadust.
course aims in English
The aim of this course is to:
- develop practical skills: equip students with specific skills to apply deep learning techniques in medical scenarios such as medical imaging and textual data;
- integrate theoretical and practical knowledge: ensure that students grasp the foundational principles of deep learning and can apply this knowledge in real-world medical settings;
- understand healthcare challenges: provide insight into the unique challenges of the healthcare sector, such as dealing with limited data, interpretability issues, ethical concerns, etc;
- promote innovation in healthcare: encourage students to explore and develop new AI-based solutions that can enhance the quality and efficiency of patient care;
- emphasize ethics and responsibility: address the ethical considerations of implementing AI in healthcare and underscore the need for responsible and inclusive technology.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- kirjeldab sügavõppe põhiprintsiipe ja nende rakendusi meditsiinilistes stsenaariumides;
- rakendab teoreetilisi teadmisi praktilistes meditsiinikeskkondades, kasutades sügavõppe tehnikaid ja algoritme;
- analüüsib tervishoiu sektori väljakutseid nagu puudulike andmetega tegelemine, mudeli interpreteerimisega seotud kitsendused, eetilised ohukohad, jm.
- hindab tehisintellekti eetilisi kaalutlusi tervishoius ja kritiseerib vastutustundliku ja kaasava tehnoloogia vajadust;
- genereerib uusi ideid AI-põhiste lahenduste arendamiseks, mis parandavad patsiendihooldust;
- koostab ja esitab projekte, mis näitavad sügavõppe rakendamise oskust meditsiinilistes probleemides.
learning outcomes in the course in Eng.
Upon completing the course, the student:
- describes the foundational principles of deep learning and their applications in medical scenarios;
- applies theoretical knowledge in practical medical settings using deep learning techniques and algorithms;
- analyzes and distinguishes the unique challenges of the healthcare sector, such as dealing with missing data, and assesses how artificial intelligence can mitigate these challenges;
- evaluates the ethical considerations of implementing AI in healthcare and critiques the necessity of responsible and inclusive technology;
- generates new ideas for AI-based solutions that enhance patient care;
- composes and presents projects that demonstrate the application of deep learning in medical problems.
brief description of the course in Estonian
Kursus sukeldub sügavõppe põhiprintsiipidesse, rõhuasetusega nende rakendamisele meditsiini kriitilistes kasutusjuhtudes.

Tervishoid on üks kõige olulisemaid sektoreid, kus tehisintellekti integreerimine pakub erilisi võimalusi ja väljakutseid. Kursus käsitleb tehisintellekti mitmekesiseid rakendusi meditsiinis, alates 2D ja 3D meditsiinilise pilditöötlusest diagnostiliseks ennustamiseks kuni loomuliku keele töötlemiseni väärtuslike ülevaadete väljavõtmiseks. Lisaks uurime ka sügavõppe mudelite rakendamisega seotud väljakutseid, nagu puudulikud andmekogumid ja mudeli interpreteerimine.

Käed-külge lähenemisviisiga struktureeritud kursus annab õpilastele praktilise kogemuse, mis on vajalik sügavõppe lahenduste rakendamiseks meditsiini reaalsetes probleemides. See kursus sillutab lõhe teoreetilise teadmise ja selle käegakatsutava rakendamise vahel pidevalt arenevas tervishoiu valdkonnas.

Märksõnad: sügavõpe, tehisnärvivõrgud, masinnägemine, keelemudelid, ülekandeõpe.
brief description of the course in English
The course delves into the foundational principles of deep learning, with an emphasis on their application in critical use cases within medicine.

Healthcare is one of the most pivotal sectors where the integration of artificial intelligence offers unique challenges and opportunities. The course addresses the diverse applications of AI in medicine, ranging from 2D and 3D medical image processing for diagnostic prediction to natural language processing for extracting valuable insights. Furthermore, we explore challenges associated with the implementation of deep learning models, such as limited data and model interpretation.

Structured with a hands-on approach, the course provides students with practical experience necessary for applying deep learning solutions to real-world medical problems. This course bridges the gap between theoretical knowledge and its tangible application in the ever-evolving field of healthcare.

Keywords: deep learning, artificial neural networks, computer vision, language models, transfer learning.
type of assessment in Estonian
Eksam.
type of assessment in English
Exam.
independent study in Estonian
-
independent study in English
-
study literature
Vastavalt õppejõu soovitustele.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
14.0
practices
1.0
practices
12.0
exercises
1.0
exercises
2.0
lecturer in charge
Elli Valla, doktorant-nooremteadur (IT - tarkvarateaduse instituut)
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Elli Valla, IT - Department of Software Science
English
https://moodle.taltech.ee/enrol/index.php?id=34282
    display more
    2024/2025 autumn
    Elli Valla, IT - Department of Software Science
    Estonian
      2023/2024 spring
      Elli Valla, IT - Department of Software Science
      English, Estonian
        Course description in Estonian
        Course description in English