Biomedical Optics
BASIC DATA
course listing
A - main register
course code
IHB0011
course title in Estonian
Biooptika
course title in English
Biomedical Optics
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Electromagnetic Fields and Waves in Biomedical Engineering (IHB0080)
Study programmes that contain the course
code of the study programme version
course compulsory
IAHM19/25
yes
Structural units teaching the course
IH - Department of Health Technologies
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärgiks on anda ülevaade biooptikas kasutatavatest põhimõtetest ja metoodikatest ning rakendustest biomeditsiinitehnika valdkonnas. Kursuse käigus omandatud teadmised ja oskused biooptikas annavad eeldused toimetulekuks selles valdkonnas esile kerkivate probleemide lahendamisel. Aine annab ülevaate valguse levist bioloogilistes kudedes ning vedelikes (n. valguse neeldumine ja hajumine) ja nende keskkondade optilistest parameetritest ja omadustest. Samuti käsitletakse biooptilist keskkonda iseloomustavate parameetrite mõõtmise metoodikaid. Kursusel tutvustatakse mitmeid biooptika rakendusi biomeditsiinitehnika valdkonnas nagu spektroskoopia, optiline kohherentne tomograafia, fotoakustika, endoskoopia jt. Muuhulgas käsitletakse koherentseid ja mittekoherentseid optilisi allikaid, detektoreid ning valgusjuhte.
course aims in English
The aim of the subject is to provide an overview of the principles and methods in bio-optics and applications used in the field of biomedical engineering. The knowledge and skills acquired during the course provide the preconditions to handle problems arising in the bio-optics. The subject provides an overview about the light propagation in biological tissues and liquids (eg absorption and scattering of light), and of the optical properties and parameters of biological media. It also discusses methodologies for measuring the parameters of a bio-optical environment. In addition, several bio-optical applications in the field of biomedical engineering like spectroscopy, optical coherence tomography, photoacoustics, endoscopy, etc. are introduced. Also, coherent and non-coherent optical sources, detectors and light waveguides are discussed.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- rakendab biooptilistes süsteemides kasutatavaid parameetreid ning nende mõõtmiste metoodikaid;
- rakendab valguse leviga seotud modelleerimise ja mõõtmise põhimõtteid bioloogilises koe ja vedelike puhul;
- analüüsib ning kasutab sobivaid valgusallikaid, detektoreid ja lainepikkuseid, mis vastaksid konkreetsele meditsiinitehnilisele rakendusele;
- analüüsib biooptiliste rakenduste tööpõhimõtteid biomeditsiinitehnikas;
- kasutab biooptiliste rakendustega seotud ohutusnõudeid;
- kasutab täiendavaid iseseiseva töö ja analüütilise/tehnilise mõtlemise oskuseid.
learning outcomes in the course in Eng.
After completing the course the student:
- applies the parameters used in biooptical systems and their measurement methods;
- applies the basic principles of modeling and measurement of light propagation in biological tissues and liquids;
- analyzes and uses suitable light sources, detectors and wavelengths applicable to specific medical applications and demands;
- analyzes the working principles of biooptical applications in biomedical technology;
- applies safety requirements of biooptical applications;
- applies additional independent work and analytical / technical thinking skills.
brief description of the course in Estonian
Aine on jaotatud kaheks mooduliks, mille esimeses osas käsitletakse valguse omadusi biooptilistes süsteemides ning nende mõõtmist ja modelleerimist (nt Monte Carlo simulatsioon). Aine teises osas käsitletakse optilisi koherentseid ja mittekoherentseid allikaid, detektoreid, valgusjuhte ning biooptika rakendusi biomeditsiinitehnikas (nt fotopletüsmograafia, spektroskoopia, optiline kohherentne tomograafia, fotoakustika, endoskoopia jt). Mõlemad moodulid lõppevad kontrolltööga, mille põhjal moodustub ka aine lõplik hinne. Mõlema mooduli kohta tuleb teostada praktikumid, esitada aruanded ning lõpphinde saamiseks aines peavad need olema kaitstud. Moodulid sisaldavad temaatilisi koduseid ülesandeid, mis aitavad ette valmistada kontrolltöödeks.
brief description of the course in English
The subject is divided into two modules, the first part of which addresses the light properties of bio-optical systems and their measurement and modeling (eg Monte Carlo simulation). The second part of the subject covers the optical coherent and non-coherent sources, detectors, waveguides and bio-optical applications in biomedical engineering (eg photoplethysmography, spectroscopy, optical coherent tomography, photoacoustics, endoscopy, etc.). Both modules end with a written test, which also forms the final grade of the subject. For both modules, practical works have to be performed, reports have to be submitted and for the assessment of the subject the reports have to be defended. The modules include thematic homework assignments that help to prepare for the written tests.
type of assessment in Estonian
Kursuse hinde saamiseks peavad olema kaitstud laboratoorsed tööd ja positiivsele hindele sooritatud kontrolltööd. Hinde kujundavad kirjalikud kontrolltööd ja kodutööd.
type of assessment in English
The laboratory works have to be defended and written tests have to be with positive results for the grading. The grade is formed based on written tests and homework assignments.
independent study in Estonian
Töö õppekirjandusega, koduste ülesannete lahendamine, labori aruannete koostamine.
independent study in English
Reading course literature, solving home assignments, preparation of laboratory work reports.
study literature
Splinter R., Hooper B.A., An Introduction to Biomedical Optics. Taylor & Francis Group, 2007
Wang L. V., Wu H., Biomedical Optics Principles and Imaging. , 2007
Boas D. A., Pitris C., Ramanujam N., Handbook of biomedical optics. CRC Press, 2011
Bigio I. & Fantini S., Quantitative Biomedical Optics. Cambridge University Press, 2016
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
12.0
practices
1.0
practices
4.0
exercises
1.0
exercises
12.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Kristjan Pilt, IH - Department of Health Technologies
Estonian
    Biooptics assessment criteria.pdf 
    display more
    2024/2025 spring
    Kristjan Pilt, IH - Department of Health Technologies
    Estonian
      Biooptics assessment criteria.pdf 
      2024/2025 autumn
      Kristjan Pilt, IH - Department of Health Technologies
      Estonian
        Biooptics assessment criteria.pdf 
        2023/2024 spring
        Kristjan Pilt, IH - Department of Health Technologies
        English, Estonian
          2022/2023 spring
          Kristjan Pilt, IH - Department of Health Technologies
          English, Estonian
            2021/2022 spring
            Kristjan Pilt, IH - Department of Health Technologies
            English
              Biooptics assessment criteria.pdf 
              2020/2021 spring
              Kalju Meigas, IH - Department of Health Technologies
              English, Estonian
                Biooptics assessment criteria.pdf 
                2019/2020 spring
                Kalju Meigas, IH - Department of Health Technologies
                English
                  Biooptics assessment criteria.pdf 
                  Course description in Estonian
                  Course description in English