Data Utilization in the Public Sector
BASIC DATA
course listing
A - main register
course code
ITE6140
course title in Estonian
Andmete kasutamine avalikus sektoris
course title in English
Data Utilization in the Public Sector
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
IAGM25/25
yes
Structural units teaching the course
IT - Department of Software Science
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on:
- positsioneerida andmeteadus interdistsiplinaarse valdkonnana ning selgitada selle seoseid ja erinevusi statistika, matemaatika ja arvutiteadusega;
- tutvustada põhjalikult kõiki vajalikke mõisteid ja meetodeid, mis pärinevad matemaatikast, statistikast ja arvutiteadusest, sh ka valdkonnale omast terminoloogiat ja spetsiifilist sõnavara;
- kaardistada andmeteaduse töövoog, mis hõlmab andmete kogumist, eeltöötlust, tunnuste projekteerimist ja valikut, mudelite treenimist ja testimist ning tulemuste tõlgendamist;
- selgitada üksikasjalikult mudeli valideerimise ja testimise meetodeid, sh posthock-analüüse ja vigade hindamist;
- tutvustada lihtsamaid ja laialt kasutatavaid tööriistu tulemuste visualiseerimiseks, pakkudes praktilisi oskusi andmete selgeks ja arusaadavaks esitlemiseks;
- arutleda andmete kasutuse üle avalikus sektoris, sh andmetepõhise otsustamise, prognoosimise ja poliitikakujundamise protsesside toetamise osas.
course aims in English
The aim of this course is to:
- place data science as an interdisciplinary field and explain its connections and differences with statistics, mathematics, and computer science;
- provide a comprehensive introduction to all the necessary concepts and methods derived from mathematics, statistics, and computer science, including the terminology and specific slang unique to the field;
- map out the data science workflow, which includes data collection, preprocessing, feature engineering and selection, model training and testing, and interpretation of results;
- explain in detail the methods for model validation and testing, including post-hoc analyses and error evaluation;
- introduce the simpler and widely used tools for visualizing results, offering practical skills for presenting data clearly and understandably;
- discuss the use of data in the public sector, including its role in supporting data-driven decision-making, forecasting and policy-making processes.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- selgitab andmeteaduse probleemide ja meetodite laia ulatust;
- määratleb andmeteaduses kasutatavate mõistete tähendusi, sh teistelt erialadelt pärinevaid termineid;
- sõnastab ja oskab püstitada andmeteaduse probleeme;
- kasutab Jupyteri keskkonda, et kirjutada Pythoni programmeerimiskeeles lihtsat koodi;
- valib ja rakendab andmeteaduses olulisi teeke, nagu NumPy, Pandas, Scikit-learn jm;
- koostab ja programmeerib töövooge, mis on seotud klasterdamise, klassifitseerimise ja regressiooni ülesannete lahendamisega;
- kasutab baastasemel andmevisualiseerimise tööriistu;
- analüüsib andmeteaduse meetodite ja tööriistade kasutusvõimalusi avalikus sektoris, et toetada andmepõhiseid otsustusprotsesse ja poliitikate kujundamist.
learning outcomes in the course in Eng.
After completing this course the student can:
- explain the broad scope of data science problems and methods;
- define the meanings of terms used in data science, including terms borrowed from other disciplines;
- formulate and pose data science problems;
- use the Jupyter environment to write basic code in the Python programming language;
- select and apply key data science libraries such as NumPy, Pandas, Scikit-learn, and others;
- design and program workflows related to solving clustering, classification, and regression tasks;
- use basic data visualization tools;
- analyze the application possibilities of data science methods and tools in the public sector to support data-driven decision-making and policy development.
brief description of the course in Estonian
Õppeaine algab andmeteaduse valdkonna üldise ülevaatega, käsitledes valdkonna seoseid statistika, tõenäosusteooria, matemaatika ja informaatikaga. Üliõpilased õpivad, kuidas sõnastada andmeteaduse ülesandeid ning tutvuvad valdkonna põhikontseptsioonidega, sh statistika, tõenäosusteooria, lineaaralgebra ja arvutiteadusega seotud teemadega.
Õppeaine keskendub andmeteaduse töövoogudele, sh andmete eeltöötlusele, tunnuste arvutamisele, mudelite treenimisele ja valideerimisele ning tulemuste tõlgendamisele kaasaegsete tehisintellekti meetodite abil. Lisaks käsitletakse SQL-i, pakkudes üliõpilastele olulist tööriista andmehalduseks.
Õppeaine sisu on asjakohane nii era- kui ka avaliku sektori jaoks, pakkudes vajalikke teadmisi andmepõhiste otsuste tegemiseks ja analüüsideks.
brief description of the course in English
The course begins with a general overview of the field of data science, exploring its connections to statistics, probability theory, mathematics, and computer science. Students learn how to formulate data science tasks and become familiar with key concepts in the field, including topics related to statistics, probability theory, linear algebra, and computer science.
The course focuses on data science workflows, including data preprocessing, feature engineering, model training and validation, and interpreting results using modern artificial intelligence methods. Additionally, SQL is covered, providing students with a key tool for data management.
The course content is relevant to both the private and public sectors, offering knowledge essential for data-driven decision-making and analysis.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
16.0
practices
0.0
practices
-
exercises
2.0
exercises
20.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Sven Nõmm, IT - Department of Software Science
Estonian
    ITE6140 Andmete kasutamine avalikus sektoris.pdf 
    Course description in Estonian
    Course description in English