Data mining
BASIC DATA
course listing
A - main register
course code
ITI8730
course title in Estonian
Andmekaeve
course title in English
Data mining
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
IAFM21/24
no
IAPM02/25
no
IVCM25/25
no
VAMM23/25
no
display more
Structural units teaching the course
IT - Department of Software Science
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Tutvustada andmekaevandamise ning võrgustike analüüsi põhimõisteid ja meetodeid
course aims in English
To introduce the main concepts and methods of data mining and network analysis
learning outcomes in the course in Est.
Üliõpilane:
Tunneb andmekaevandamise põhimõisteid: atribuut, tunnus, kauguse ja sarnasuse funktsioon jne.
Tunneb andmekaevandamise põhiülesandeid : Klasterdamine, klassifitseerimine, võõrväärtuste analüüs ja assotsiatiivsete mustrite analüüs.
Tunneb kõigi põhiülesannete matemaatilisi aluseid.
Oskab andmekaevandamise probleeme formaalselt püstitada.
Oskab valida andmekaevandamise probleemi lahendamiseks sobiva meetodi.
Tunneb andmekaevandamise põhimeetodite algoritme ja oskab neid implementeerida.
Oskab tulemusi interpreteerida.
learning outcomes in the course in Eng.
The student:
Is familiar with main notions used in datamining such as Attribute, feature, distance/ similarity function.
Understands main problems of the data mining area: clustering, classification, outlier analysis and associative patterns mining.
Familiar with mathematical foundations of each problem.
Is able to formally state data mining problem.
Able to choose methods to solve given problem.
Able to program the algorithms of most popular methods.
Able to interpret achieved results.
brief description of the course in Estonian
Õppetöö on korraldatud loengute ja harjutustundide vormis. Loengute jooksul käsitletakse andmekaevandamise teoreetilised aspekte, nende matemaatilisi ja algoritmilisi aluseid.
Harjutustundides on tähelepanu all põhimeetodite ja algoritmide programmerimine „R“ keeles.
Andmekaevandamise põhimõisted ja probleemid: Kauguse ja sarnasuse funktsioon, klasterdamine, klassifitseerimine, võõrväärtuste analüüs ja assotsiatiivsete mustrite analüüs on kaetud aine esimeses osas. Aine teine osa on pühendatud mõistete ja meetodite adapteerimisele tüüpülesannete lahendamiseks: ruumiandmede kavandamine, graafiandmete kaevandamine ja sotsiaalvõrugustike analüüs, andmevoogude kaevandamine.
brief description of the course in English
Teaching is performed by means of lectures and practices. Lectures are devoted to the theory of data mining. Practices are conducted in the computer class, where implementation of main algorithms is discussed using “R” language. The course consists of two parts. First part is devoted to the main notions and problems of data mining. Main notions and concept, such as, distance function, cluster analysis, classification, outlier analysis, associative pattern mining are covered. The second part of the course is devoted to the application of this knowledge to such problems as: spatial data mining, stream data mining, graph data mining and social networks analysis.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Course webpage: https://courses.cs.ttu.ee/pages/Data_Mining_(ITI8730)

Title Data Mining: The Textbook
Author Charu C. Aggarwal
Edition illustrated
Publisher Springer International Publishing, 2015
ISBN 3319141414, 9783319141411
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Sven Nõmm, IT - Department of Software Science
English
    display more
    2024/2025 autumn
    Sven Nõmm, IT - Department of Software Science
    English
      2023/2024 autumn
      Sven Nõmm, IT - Department of Software Science
      English
        2022/2023 autumn
        Sven Nõmm, IT - Department of Software Science
        English
        2x mandatory open book tests. Each test gives 10% of the final grade.
        For each test one make-up attempt will be given. Tests are performed
        online over the time period of 12 hours.
        3x mandatory home assignments (Computational assignment + short
        write up.) 10% of the final grade each. Assignments are accepted up
        to one week after the deadline with the penalty of 10%.
        Final exam (gives 50 % of the final grade): Computational assignment and written report on assigned
        topic + discussion with lecturer. Note examination date will be
        announced in the end of November - beginning of December.
        Prerequisites:
        all tests are accepted (graded as 51 or higher)
        all home assignments are accepted (graded as 51 or higher)
        In addition to the mandatory tests the lecturer may give grading points
        to the students active during the lectures and practices. Such grading
        points are usually assigned based on non-mandatory short tests given during the classess.
          2021/2022 autumn
          Sven Nõmm, IT - Department of Software Science
          English
            ITI8730 Data Mining assessment criteria.pdf 
            2020/2021 autumn
            Sven Nõmm, IT - Department of Software Science
            English
              ITI8730 Data Mining assessment criteria.pdf 
              2019/2020 autumn
              Sven Nõmm, IT - Department of Software Science
              English
                ITI8730 Data Mining assessment criteria.pdf 
                2018/2019 autumn
                Sven Nõmm, IT - Department of Software Science
                English
                  ITI8730 Data Mining assessment criteria.pdf 
                  Course description in Estonian
                  Course description in English