course aims in Estonian
Stratigraafiliste ja paleoökoloogiliste ja andmete iseäraga tutvumine. Statistilise hüpoteesi põhimõttest aru saamine. Ülevaate saamine põhilistest maateadustes kasutatavatest statistikameetoditest, kirjeldavatest statistikutest. Vabavara statistikaprogrammi "R" omandamine kesktasemel.
course aims in English
Comprehending the characteristics of stratigraphical and paleoecological data. Understanding the principal of statistical test. Getting an overview of the statistical methods, descriptive statistics and graphical used in earth sciences. Learning the basics of the free-ware statistics program R.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
* oskab kasutada statistikaprogrammi R;
* omab ülevaadet erinevatest kirjeldavatest statistikutest;
* oskab andmeid erinevatel graafikutel esitada;
* omab ülevaadet põhilistest statistikameetoditest;
* oskab püstitada statistilist hüpoteesi ja seda testida.
learning outcomes in the course in Eng.
Students taking the the course:
* are skilled to use the statistics program R;
* have an overview of different descriptive statistical methods;
* are able to present data on different graphs;
* have an overview of the main statistical methods;
* can postulate a statistical hypothesis and test it.
brief description of the course in Estonian
Sissejuhatus statistikaprogrammi R, ülevaade selle tööpõhimõtetest. Kirjeldavad statistikud (keskmine, mediaan, standardhälve, standardviga) ja graafikud (histogramm, aegread, hajusgraafik). Mitmekesisuse kirjeldamine. Korrelatsioon. Statistiline mudel, null-hüpotees. Ülevaade peamistest statistikameetoditest, mida on võimalik maateadustes kasutada. Lineaarne regressioon, üldistatud lineaarsed mudelid. Mittelineaarsed seosed: ruutseos, kuupseos, üldistatud aditiivsed mudelid. Ajalise ja ruumilise autokorrelatsiooni arvestamine statistilistes mudelites. Klasteranalüüs, erinevad ordinatsioonimeetodid: peakomponentanalüüs (PCA), trendivaba vastavusanalüüs (DCA) ; liiasusanalüüs (RDA), kanooniline vastavusanalüüs (CCA).
brief description of the course in English
Introduction to the statistics program R. Descriptive statistics (average, median, standard deviation, standard error) and graphics (histogram, time-series plots, scatterplots). Describing diversity. Correlation. Statistical model, statistical hypothesis. Overview of the main statistical methods that can be used in earth sciences. Linear regression, generalized linear models. Non-linear associations: polynomial regression, generalized additive models. Accounting for temporal and spatial autocorrelation in statistical models. Cluster analysis. Different ordination methods: principal component analysis (PCA), detrended correspondence analysis (DCA), redundancy analysis (RDA), canonical correspondence analysis (CCA).
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Dalgaard, P (2002). Introductory statistics with R, Springer; Oksanen, J. (2011). Multivariate Analysis of Ecological Communities in R: vegan tutorial.
study forms and load
daytime study: weekly hours
2.0
session-based study work load (in a semester):