course aims in Estonian
Luua tingimused teadmiste ja oskuste omandamiseks looduskeskkonna suurandmete innovatiivsete analüüsimeetodite kasutamiseks eesmärgipärase teadusliku informatsiooni esitamisel.
course aims in English
To create conditions for the acquisition of knowledge and skills for the use of innovative methods of analysis of environmental big data in the presentation of goal driven scientific information.
learning outcomes in the course in Est.
Üliõpilane kasutab keskkonna suurandmete klassikalisi ja innovatiivseid analüüsimeetodeid teaduslike ja rakenduslike tööde koostamiseks ning toodete ja teenuste arenduste väljatöötamiseks.
learning outcomes in the course in Eng.
The student uses classical and innovative methods of analysis of environmental big data to compile scientific and applied outputs and to develop products and services.
brief description of the course in Estonian
Keskkonna suurandmed on 4-mõõtmelised (3-ruumimõõdet ja aeg) ja keskkond, mida need andmed kirjeldavad, on tugevalt mittelineaarne. Andmetest eesmärgipärase informatsiooni väljatoomine ja esitamine nõuvad kombineeritud analüüsimeetodite kasutamist. Kursus keskendub klassikaliste ja tehisintellektil põhinevate meetodite rakendamisele ja uute innovatiivsete meetodite tutvustamisele ja kasutamisele modelleerimise, kaugseire ja in-situ ning laboratoorsete andmete eraldiseisval ja kombineeritud analüüsil. Loengute käigus antakse ülevaade, et kuidas kasutada analüüsi tulemusi erineva ajamastaabiga prognooside ja stsenaariumide koostamiseks.
brief description of the course in English
The environmental data are 4-dimensional (3 in space and time) and the environment they describe is strongly non-linear. The retrieval and presentation of goal driven information from data requires the use of combined analytical methods. The course focuses on the application of classical, artificial intelligence-based methods and the introduction and use of new innovative methods for the stand alone and combined analysis of the modeling, remote sensing, in-situ and laboratory data. The lectures provide an overview of the use of the results of the analysis to produce forecasts and scenarios at different time scales.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Ray Abernathey, 2021, An Introduction to Earth and Environmental Data Science https://earth-env-data-science.github.io/intro.html
Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, 745 pp.-
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):