Linear Algebra
BASIC DATA
course listing
A - main register
course code
NTS1670
course title in Estonian
Lineaaralgebra
course title in English
Linear Algebra
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
EDTR17/25
yes
Structural units teaching the course
ET - Tartu College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Anda teoreetilised alused lineaarsete võrrandisüsteemide, maatriksite, determinantide ja vektorruumide teooriale.
Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid.
Näidata lineaaralgebra võimalikke rakendusi praktikas ja teistes teadusharudes.
Harjutada üliõpilasi matemaatilise mõtlemise ja sümboolikaga.
course aims in English
To give theoretical foundations for the theory of systems of linear equations, matrices, determinants and vector spaces.
To teach to solve main problems related to the theory mentioned above.
To show possible applications of linear algebra in practice and other disciplines.
Training of students in mathematical thinking and symbolism.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- sooritab tehteid kompleksarvudega nii algebralisel kui ka trigonomeetrilisel kujul;
- teostab tehteid maatriksitega (lineaarsed tehted, korrutamine, transponeerimine, pöördmaatriksi ja astaku leidmine);
- lahendab lineaarseid võrrandisüsteeme, esitab neid maatrikskujul ja leiab nende pseudolahendeid;
- leiab determinandi väärtust ja sõnastab determinantide olulisemad omadused;
- sõnastab vektorruumide ja eukleidiliste ruumide teooria põhimõisteid (baas, koordinaadid, skalaarkorrutis, pikkus, kaugus), arvutab meetrilisi suurusi eukleidilistes ruumides ja lahendab tüüpülesandeid sirgete ja tasandite kohta;
- sõnastab lineaarteisendustega seotud mõisteid ning leiab lineaarteisenduse omaväärtuseid ja omavektoreid;
- viib ruutvormi ortogonaalteisendusega kanoonilisele kujule;
- testib praktiliste ülesannete lahendamisel saadud tulemuste õigsust.
learning outcomes in the course in Eng.
Having finished the study of the subject, a student has to be able:
To carry out operations with complex numbers presented in algebraic or polar form;
To carry out matrix operations (linear operations, multiplication, transposition, finding of the inverse and the rank);
To present a system of linear equations in the matrix form and to find its solutions and pseudosolutions;
To find the value of a determinant and to know the main properties of determinants;
To formulate the main notions of the theory of vector and Euclidean spaces (base, coordinates, scalar product, length, distance), to calculate metric values in Euclidean spaces and to solve typical problems related to straightlines and planes;
To formulate the main notions of the theory of linear maps, to find the eigenvalues and eigenvectors of a linear map;
To find the canonical form of a quadratic form using orthogonal transformations;
To check the correctness of results obtained by solution of practical exercises.
brief description of the course in Estonian
Kompleksarvud ja tehted nendega nii trigonomeetrilisel kui ka geomeetrilisel kujul. Moivre'i valem. Kompleksarvude juurimine.
Vektorruumi definitsioon ja näiteid. Vektorite lineaarne sõltuvus. Vektorruumi baas. Baaside näiteid. Vektori koordinaadid ja tehted koordinaatkujul antud vektoritega.
Maatriksid ja tehted maatriksitega. Tehete omadused.
Lineaarne võrrandisüsteem, tema lahend ja maatrikskuju. Gaussi meetod. Lineaarse võrrandisüsteemi pseudolahend.
n-ndat järku determinandi definitsioon. Determinantide omadused. Maatriksi astak ja selle leidmine. Teoreem maatriksi astakust.
Pöördmaatriks, selle olemasolu tingimus ja leidmine.
Afiinse ruum ja koordinaadid afiinses ruumis. Eukleidiline ruum ja meetrilised suurused selles.
Sirge n-mõõtmelises eukleidilises ruumis ja sirge parameetrilised ning kanoonilised võrrandid. Hüpertasand ja selle erijuhud. Punkti kaugus hüpertasandist.
Teist ja kolmandat järku determinandi geomeetriline tõlgendus. Vektorkorrutis ja selle omadused.
Ülevaade teist järku joontest.
Lineaarne kujutus ja selle koordinaatkuju. Ortogonaalteisendus ja ortogonaalmaatriks. Omaväärtused ja omavektorid ning nende leidmine. Ruutvorm ja tema viimine kanoonilisele kujule.
brief description of the course in English
Complex numbers and their polar form. Operations with complex numbers. Finding roots of complex numbers.
Axioms of a vector space. Examples. Linearly dependent sets of vectors. Basis of a vector space. Examples of bases. The coordinates of a vector relative to a basis.
Matrices and matrix operations. Properties of matrix operations.
Systems of linear equations and their solutions. The Gaussian elimination method for solving of systems of linear equations. A pseudosolution of a system of linear equations.
Definition and properties of determinants. Evaluating of determinants. The rank of a matrix. The theorem on the rank of a matrix. The inverse of a matrix.
Affine spaces. Coordinates in an affine space. Euclidean spaces. Metric values in an Euclidean space.
Straight lines in n-dimensional Euclidean spaces. Hyperplanes. Distance between a point and a hyperplane.
The geometric interpretation of 2x2 and 3x3 matrices. The cross product of vectors and its properties.
A linear map and its matrix. Orthogonal transformations and orthogonal matrices. Eigenvalues, eigenvectors and finding of them. Quadratic forms and finding their canonical forms by orthogonal transformations.
type of assessment in Estonian
Teadmiste kontroll toimub eksamil. Eksamil kontrollitakse üliõpilase teoreetilisi teadmisi: lihtsamate faktide tõestusi, mõistete definitsioone ja vaadeldavate matemaatiliste objektide omadusi. Samuti tuleb eksamil lahendada ülesandeid.
type of assessment in English
The control of knowledges takes place in examinations at the end of a term. In examinations the following knowledges are checked: proofs of elementary facts, the main notions and the main properties of considerable mathematical objects. Also is necessary to solve some problems.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja koduste ülesannete täitmises.
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems.
study literature
Põhiõpik:
Puusemp, P. Lineaaralgebra. Tallinn, Avita, 2008.
Täiendav kirjandus:
Paal, E. Lineaaralgebra. Tallinn, TTÜ kirjastus, 2004.
Kangro, G. Kõrgem algebra. Tallinn, 1962.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Tiina Zingel, IC - IT College
Estonian
    Lineaaralgebra NTS1670 inglise.pdf 
    display more
    2024/2025 autumn
    Tiina Zingel, IC - IT College
    Estonian
      Lineaaralgebra NTS1670 inglise.pdf 
      2023/2024 autumn
      Tiina Zingel, IC - IT College
      Estonian
        2022/2023 autumn
        Helle Hallik, ET - Tartu College
        Estonian
          2021/2022 autumn
          Helle Hallik, ET - Tartu College
          Estonian
            Lineaaralgebra NTS1670 inglise.pdf 
            2020/2021 autumn
            Helle Hallik, ET - Tartu College
            Estonian
              Lineaaralgebra NTS1670 inglise.pdf 
              2019/2020 autumn
              Helle Hallik, ET - Tartu College
              Estonian
                Lineaaralgebra NTS1670 inglise.pdf 
                2018/2019 autumn
                Helle Hallik, ET - Tartu College
                Estonian
                  Lineaaralgebra NTS1670 inglise.pdf 
                  Course description in Estonian
                  Course description in English