course aims in Estonian
Ülevaade erirelatiivsusteooria ja elektrodünaamika põhimõtetest ja tähtsamatest rakendustest; väljateooria matemaatilise baasaparatuuri kasutamaõppimine; elektromagnetismi põhiseaduste tundmaõppimine tasemel, mis võimaldab modelleerida matemaatiliselt lihtsamaid elektromagnetisminähtusi; olulisemate looduslike ja insener-tehniliste elektromagnetisminähtuste füüsikalise mehhanismi mõistmine; erirelatiivsusteooria aluste ja olulisemate seaduspärasuste tundmaõppimine.
course aims in English
Overview of special relativity and electrodynamics and their major applications; understanding of mathematical basics of field theory; knowledge of electromagnetism at a level that allows to mathematically model simpler physical phenomena; understanding the basics of special relativity.
learning outcomes in the course in Est.
Üliõpilane:
- tunneb erirelatiivsusteooria ja elektrodünaamika aluseid, põhilist matemaatilist aparatuuri ja tähtsamaid rakendusi;
- suudab iseseisvalt lahendada kinemaatika- ja dünaamikaülesandeid.
learning outcomes in the course in Eng.
The student:
- knows the basics of special relativity and electrodynamics, the main mathematical methods and most important applications;
- can independently solve problems of kinematics and dynamics.
brief description of the course in Estonian
Skalaarne ja vektorväli. Väljateooria matemaatika: gradient, divergents, rootor, Gaussi ja Stokes’i integraalteoreemid divergentsi ja rootori jaoks. Maxwelli võrrandid diferentsiaalkujul, vektorpotentsiaal, kalibratsioonteisendused, Poissoni võrrand. Poyntingi vektor ja energiavoo pidevuse võrrand. Laetud osakese üldistatud impulss elektromagnetväljas, tema liikumisvõrrandi kanooniline kuju, üldistatud impulsi ja impulsimomendi jäävus. Laetud osakese adiabaatiline invariant mittehomogeenses magentväljas liikumisel. Magnetpudel ja Maa kiirgusvöö. Plasma: Debye raadius ja laetud osakese vaba tee pikkus, magnetvoo transport ja difusioon, magnetdünamo ja kosmiliste magnetväljade (planeedid, tähed, neutrontähed) teke. Termotuumaplasma; erinevad termotuumasünteesi projektid. Elektromagnetlained. Koaksiaalne
lainejuht. Ponderomotiivne jõud, osakeste kiirendamine ponderomotiivse jõu abil. Landau sumbumine. Erirelatiivsusteooria postulaadid, 4-vektorid (aeg-koordinaat ja energia-impulss), Lorentzi teisendused kui ruumipööre Minkowski ruumis (ka Wicki pööre ja ict-parametriseering), Lorentzi skaalarid (intervall, seisumass); kiiruste liitmine; Doppleri efekt. Aeg ja omaaeg relativistlikel kosmosereisidel; vaatleja suhtes nurga all lähenevate objektide näivalt supraluminaarne liikumine. Relativistlik kinemaatika (ülesannete lahendamisel optimaalne tundmatute parameetrite valik - kiirus kui ebaotstarbekas parameeter), Comptoni efekt. Elektromagnetvälja teisenemine ja tensorkujul esitamine. Hilinevad potentsiaalid, dipoolkiirgus, osakese pidurdumine dipoolkiirguse tõttu. Tšerenkovi kiirgus, lainetakistus.
brief description of the course in English
Scalar and vector field. Mathematical basis of field theory: gradient, divergence, curl, Gauss’ and Stokes’ integral theorems. Differential Maxwell equations, vector potential, gauge transformations, Poisson equation. Poynting vector and continuity equation. Generalised momentum of a charged particle in electromagnetic field, canonical form of its equation of motion, conservation of the generalised momentum and angular momentum. Adiabatic invariant of a charged particle in a non-homogenous magnetic field. Magnetic trap and the van Allen belt. Plasma: Debye radius and mean free path, transport and diffusion of magnetic flux, magnetic dynamo and generation of cosmic magnetic fields (planets, stars, neutron stars). Thermonuclear plasma and reactor types. Electromagnetic waves. Coaxial waveguide. Ponderomotive force as a source of acceleration. Landau dumping.
Postulates of special relativity, 4-vectors (time-space and energy-momentum), Lorentz transformations (Wick rotation and ict parameterisation), Lorentz scalars (intervall, mass); addition of velocities; Doppler effect. Time and proper time in relativistic space travel; apparent supraluminal motion of objects moving at an angle to an observer. Relativistic kinematics (right choice of variables in problems), Compton effect. Transformation of the electromagnetic field, its tensor form. Retarded potential, dipole radiation, particle deceleration due to dipole radiation. Cherenkov radiation, characteristic impedance.
type of assessment in Estonian
Koduülesanded, eksam
type of assessment in English
-
independent study in Estonian
Iganädalaste koduülesannete lahendamine
independent study in English
Solving problems given as weekly homework
study literature
Jackson, „Electrodynamics“. E.F. Taylor, J.A. Wheeler, „Spacetime Physics“. S. Carroll, „Spacetime and Geometry“
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):