course aims in Estonian
- Elektromagnetismi põhiseaduste tundmaõppimine tasemel, mis võimaldab mõista elektrinähtusi igapäevaelus ja looduses ning lahendada lihtsamaid praktilisi ülesandeid
- elektriseadmete ja elektrotehniliste põhikomponentide tööpõhimõttega tutvumine;
- tutvumine jätkusuutlike elektrienrgia tootmise ja tarbimise meetoditega;
- elektriseadmete ohutu käitlemise reeglite omandamine.
course aims in English
- Comprehending the basic laws of electromagnetism at a level which makes it possible to understand the roots of electrical phenomena in nature and in our daily, and to solve simpler practical problems;
- Familiarizing on the oprational principles of basic electrical devices and electrotechnical components;
- Familiarizing on the sustainable methods of production and consumption of electrical energy;
- Learning the safety rules for handling electrical devices.
learning outcomes in the course in Est.
- teab ja saab aru elektromagnetismi põhimõistetest ja seadustest, sh elektrilaeng, elektrivool, elektri- ja magnetväli, Maxwelli võrrandid integraalkujul, elektri- ja magnetväljade Lorentzi teisendus;
- oskab kasutada elektrodünaamika seadusi lihtsamate probleemide lahendamisel ja tunneb olulisemaid lahendamist lihtsustavaid meetodeid (mh potentsiaalide meetod, kontuurvoolude meetod, impedantsi kasutamine, elektriliste kujutiste meetod);
- saab aru elektromagnetiliste loodusnähtuste (äike, virmalised, planeetide ja tähtede magnetväljad, magnettormid, erinevad elektrilahenduse vormid) olemusest;
- saab aru olulisemate elektromagetilistel nähtustel baseeruvate seadmete (mh eritüübilised elektrigeneraatorid, elektrimootorid, transformaatorid, raadiosideseadmed, GPS, polaroidfiltrid, multimeetrid) tööpõhimõttest ja valdab nende kasutamise ohutustehnikat;
- oskab kasutada elektrodünaamika seadusi ja meetodeid rakendusfüüsika ja inseneriteadustega seotud probleemide analüüsil ja lahendamisel.
learning outcomes in the course in Eng.
- knows and understands the main concepts and laws of electromagnetism, such as electric charge and current, electric and magnetic fields, Maxwell's equations in integral form, Lorentz transformation for electric and magnetic fields;
- is able to use the laws of electrodynamics for solving simpler problems and knows main methods for simplification of the analysis (e.g. the method of node potentials, the method of loop currents, using the concept of impedance, the method of electrical images);
- understands the physical nature of electromagnetical phenomena in nature (thunderstorm, aurora, planetary and stellar magnetic fields, various forms of electric discharge);
- understands the operational principles of common devices based of electromagnetic phenomena (e.g. various types of electric generators, electric motors, transformers, radio connection devices, GPS, polaroid filters, multimeters) and knows the sfatey rules for handling these devices;
- is able to use the laws and methods of electrodynamics for solving and analysis of relevant engineering tasks.
brief description of the course in Estonian
Elektrilaeng, laengu jäävus, elektrivool, Coulomb'i seadus. Elektrostaatiline väli, potentsiaal, Gaussi seadus, elektrivälja leidmine sümmeetrilistel erijuhtumitel. Elektriline dipool, dipoolväli, elektrilaengute süsteemi dipoolmoment. Dielektrikute polariseerumine elektriväljas, D-väli, piesoelektrikud; kondensaatorid. Väljavõrrandite lineaarsus ja superpositsiooniprintsiip; elektrivälja ääretingimused ning korrektse väljaleidmise ülesande lahendi ühesus; elektriliste kujutiste meetod. Elektrijuhtidel ja dielektrikutel indutseeritud laengud. Plasma, kvaasineutraalsus; atmosfäärielekter, äike, koroona-, kaar- ja huumlahendus, ohutusreeglid äikese ajal. Elektrijuhid, pooljuhid, Ohm’i ja Jole’i seadused, takistid, dioodid, amper-, volt- ja oommeetrid. Bioloogilised elektriväljad, elektrivoolu bioloogiline mõju, lekkevoolukaitse. Valgusallikad, valgusvoog, värviedastusindeks, kvantefektiivsus. Elektrokeemiline, termoelektriline ja fotoefekt, elektromotoorjõud. Kirhoffi seadused, vooluahelate lahendamist lihtsustavad meetodid. Magnetväli, Lorentzi jõud, Ampére'i tsirkulatsiooniteoreem, magnetvälja leidmine sümmeetrilistel erijuhtumitel. Ampére’i jõud, magnetdipool. Magneetumus, H-väli, hüsterees; magnetvälja leidmine suletud ferromagneetilise kontuuriga süsteemides.Faraday seadus, indutseeritud elektromotoorjõud, nihkevool, induktorid, induktiivsus (sh vastastikune), pingetransformaatorid, elektromagnetvälja energiatihedus. Maxwelli võrrandid integraalkujul. Vahelduvvool, voolu ja pinge kompleksamplituud, impedantsid, aktiivvõimsus, omavõnkesagedused. Vahelduvvoolu generaatorid ja mootorid; elektrienergia akumuleerimine; taastuvenergeetika ja selle kitsaskohad. Elektromagnetvälja Lorenzi teisendused. Elektromagnetlained: polarisatsioon, Poyntingi vektor, kiirgamine ja vastuvõtmine (antenn), bioloogiline mõju. Lainejuhid. Ülijuhid, skin-efekt. Maa magnetväli ja kosmiline kiirgus, magnettormid, virmalised. Plasmasagedus.
brief description of the course in English
Electric charge and its conservation, current, Coulomb's law, potential, Gauss law, electric field for symmetric configurations. Electric dipole, dipole field, dipole moment of a charge system. Polarization of dielectrics in E-field, electric D-field, piesoelectrics; capacitors. Linearity of field equations and superposition principle; boundary conditions for electric field and uniqueness of solution for a correctly posed task; the method of electrical images. Induction of charges on metals and dielectrics. Plasma, quasineutrality, atmospheric electricity, lightning and other forms of discharge, safety during thunderstorms.
Conductors, semiconductors, Ohm’s and Jole’s laws, resistors, diodes; Am-, Volt-, and Ohm-meters. Biological electric fields, biological effect of currents, residual-current circuit breakers. Light sources: luminous flux, color rendering index, quantum efficiency. Electrochemical, thermoelectric, and photoelectric effects, electromotive force. Kirhoff’s laws and methods simplifying the solution of circuits.
Magnetic field, Lorenz force, Ampére's circulation theorem, B-field for symmetric configurations. Ampére’s force, magnetic dipole, magnetisation, magnetic H-field, hysteresis; finding B-field for systems with closed ferromagnetic circuit. Faraday’s law, induced electromotive force, displacement current, inductors, inductance (incl. mutual), voltage transformers, energy density of electromagnetic field. Maxwell’s equations in integral form.
Alternating current (AC), complex amplitude, impedances, natural frequencies. AC generators and motors; accumulation of electric energy; renewable energetics and the associated problems.
Lorenz transforms for E- and B-fields. Electromagnetic waves: polarization, Poynting vector, radiation and reception (antennae), biologic effect. Waveguides.
Superconductors, skin-effect. Earth's magnetic field, cosmic radiation, geomagnetic storms, aurora. Plasma frequency.
type of assessment in Estonian
Eksam
Eksam koosneb teooriaküsimusest ja ülesannetest; teooriaküsimuse vastamiseks ettevalmistamise perioodil ning ülesannete lahendamise ajal võib õpilane kasutada oma konspekti. Teooriaküsimuse vastamise ajal peab õpilane suutma vastata täpsustavatele küsimustele ilma konspekti abita.
type of assessment in English
Exam
Exam consists of theory question and problems. During the preparation of the theory question and solving the problems students can use their conspect.
independent study in Estonian
Igaks harjutustunniks koduülesannete lahendamine
independent study in English
Solving problems given as homework
study literature
David Halliday, Robert Resnick ja Jearl Walker, „Füüsika põhikursus“, vol 2.
David J Griffiths, „Introduction to Electrodynamics“, 4th Edition. Pearson Education 2012
The Feynman „Lectures on Physics“, Volume II, http://www.feynmanlectures.caltech.edu/II_toc.html
Jaan Kalda, „Electrical Circuits“, http://www.ioc.ee/~kalda/ipho/electricity-circuits.pdf
Valter Kiisk, „Elekter ja magnetism“, http://www.ioc.ee/~kalda/ipho/Elekter.pdf
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):