Thermodynamics
BASIC DATA
course listing
A - main register
course code
YFX0520
course title in Estonian
Termodünaamika
course title in English
Thermodynamics
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Probability Theory and Mathematical Statistics (YMX0030)
The course is a prerequisite
Fundamentals of contemporary biophysics and biomechanics (YFX0601)
Study programmes that contain the course
code of the study programme version
course compulsory
YAFB02/25
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on tutvustada termodünaamika põhimõisteid, põhiseadusi ja põhivalemeid; seostada termodünaamika seadusi praktilise elu ülesannetega (sh kuidas neid saab rakendada jätkusuutliku arengu teenistusse), seletada nende abil olulisemaid soojusnähtusi looduses, anda oskus lihtsamate soojusprotsessidega seotud ülesannete lahendamiseks.
course aims in English
Giving overview of basic concepts, laws and formulae of thermodynamics, connect the knowledge about thermodynamics with practical tasks (e.g. showing how to apply these for sustainable development), use this knowledge to explain the most important thermal phenomena in nature. Developing skills for solving simpler problems related to thermal phenomena.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- tunneb termodünaamika põhimõisteid, põhiseadusi ja põhivalemeid
- oskab seostada termodünaamika seadusi praktilise elu ülesannetega, mh saab aru, millised piirangud seab termodünaamika II seadus insener-tehnilistele lahendustele;
- oskab rakendada termodünaamikateadmisi keskkonnasõbralike insener-tehniliste lahenduste leidmiseks;
- oskab seletada termodünaamika seaduste abil olulisemate soojusnähtuste toimemehanisme looduses;
- oskab lahendada lihtsamaid soojusprotsessidega seotud ülesandeid.
learning outcomes in the course in Eng.
After completing this course the student:
- knows the basic concepts, laws and formulae of thermodynamics;
- is able to connect this knowledge to practical tasks understanding, in particular, how the second law of thermodynamics sets limits to what can be achieved with engineering solutions;
- is able to apply the knowledge about thermodynamics to finding environmentally friendly engineering solutions;
- is able to use this knowledge to explain the most important thermal phenomena in nature;
- is able to solve simpler problems related to thermal processes.
brief description of the course in Estonian
Soojuslik siseenergia, termodünaamika I s. Temperatuur kui soojuse edasikandumise suunda määrav suurus, termodünaamika II seadus. Soojusreservuaar, soojuslik tasakaal, statsionaarsed olekud kvantmehaanikas, Boltzmanni seadus; pööratavad protsessid. Temperatuuri statistiline definitsioon. Soojusmahtuvus, soojusjuhtivus, soojuskiirgus, soojusvoog. Soojuskadusid minimeerivad lahendused 0-energia majadesse. Soojusvoogude tasakaal, elektriahelate ja soojusvoogude analoogia. Ideaalse gaasi mudel ja olekuvõrrand. Maxwelli jaotus, kanooniline jaotus, statistiline summa, vaba energia, kulg- pöörd- ja võnkliikumise keskmine energia, pöörlemise ja võnkumise ergastumine temperatuuri kasvamisel, vabadusastmed, efektiivne vabadusastmete arv, ideaalse gaasi siseenergia. Adiabaatiline protsess ja adiabaatiline invariant; adiabaadi astmenäitaja; adiabaatiline atmosfäär, inversioon. Heli, heli kiirus, lööklaine (Rankine-Hugoniot tingimused), muusikalised instrumentid ja erinevad viisid heli tekitamiseks. Molekulide põrke ristlõikepindala, keskmine vaba tee pikkus, difusioon, gaaside soojusjuhtivustegur, viskoossus. Faasiüleminekud, aurustumis- ja sulamissoojus, aururõhk, küllastunud aur, keemine, vedeliku ja gaasi metastabiilsed olekud. Pinnaenergia, pindpinevustegur, kapillaarrõhk, märgamisnurk, pindaktiivsed ained ja superhüdrofoobsed pinnad. Entroopia (klassikaline, statistiline ja Shannoni), entroopia kasv mitte-tasakaalulistes süsteemides, mitte-eristuvad osakesed, ideaalse gaasi entroopia. Soojusmasinad, Carnot tsükkel, S-T-diagramm, termodünaamika II seaduse alternatiivformuleeringud. Pööratud soojusmasin: soojuspump ja külmkapp. Clausius-Clapeyron’i võrrand. Termoelektriline efekt, termoelemendid kui soojusmasinad. Globaalne atmosfääritsirkulatsioon kui soojusmasin. Planck'i jaotus, kristallide soojusmahtuvus, Debye temperatuur. Makrokanooniline jaotus, keemiline potentsiaal, Fermi ja Bose statistika, kõdunud Fermi gaas, Bose kondensaat.
brief description of the course in English
Thermal internal energy, 1st law of thermodynamics. Temperature as a quantity defining the direction of heat flux, 2nd law of thermodynamics. Heat reservoir, thermal equilibrium, reversible processes. Statistical definition of temperature. Heat capacitance, heat conductivity, heat radiation, heat flux. Engineering solutions for 0-energy houses. Equilibrium of heat fluxes, analogy between electric circuits and heat fluxes. The model of ideal gas, its equation of state. Maxwell’s and canonical distributions, free energy, partition sum, average energy of translational, rotational and oscillatory motions, excitation of rotations and oscillations by increasing temperature, degrees of freedom, effective number of degrees of freedom, internal energy of ideal gas. Adiabatic process, adiabatic invariant, adiabatic index; adiabatic atmosphere, inversion. Sound, the speed of sound, shock wave (Rankine-Hugoniot conditions), musical instruments and different ways of creating sound. Cross-sectional area of molecular collisions, mean free path length, diffusion, heat conductivity of gases, viscosity. Phase transitions, latent heat of phase transitions, vapour pressure, saturation pressure, boiling, metastable states of liquids and gases. Surface energy, surface tension, capillary pressure, contact angle, surfactants and super-hydrophobic surfaces. Entropy (classical, statistical and Shannon’s), entropy growth in systems out of equilibrium, identical particles, entropy of ideal gas. Heat engines, Carnot cycle, S-T-diagram, alternative formulations of the second law of thermodynamics. Reversed heat engine: heat pump and fridge. Thermoelectric effect, thermoelements as heat engines. Global atmospheric circulation as a heat engine. Clausius-Clapeyron relation. Planck's distribution, heat capacitance of crystals, Debye temperature. Macrocanonical distribution, chemical potential, Fermi and Bose statistics, degenerate Fermi gas, Bose condensate, superconductivity and superfluidity.
type of assessment in Estonian
Eksam
Eksam koosneb teooriaküsimusest ja ülesannetest; teooriaküsimuse vastamiseks ettevalmistamise perioodil ning ülesannete lahendamise ajal võib õpilane kasutada oma konspekti. Teooriaküsimuse vastamise ajal peab õpilane suutma vastata täpsustavatele küsimustele ilma konspekti abita.
type of assessment in English
Exam
Exam consists of theory question and problems. During the preparation of the theory question and solving the problems students can use their conspect.
independent study in Estonian
Igaks harjutustunniks koduülesannete lahendamine
independent study in English
Solving problems given as homework
study literature
J Kalda, Thermodynamics, http://www.ioc.ee/~kalda/ipho/Thermodyn.pdf
David Halliday, Robert Resnick ja Jearl Walker, „Füüsika põhikursus“, vol 1.
The Feynman „Lectures on Physics“, Volume II, http://www.feynmanlectures.caltech.edu/II_toc.html
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Jaan Kalda, LT - Department of Cybernetics
Estonian
    YFX0520 Thermodynamics Methods of evaluation.pdf 
    display more
    2024/2025 spring
    Jaan Kalda, LT - Department of Cybernetics
    Estonian
      YFX0520 Thermodynamics Methods of evaluation.pdf 
      2023/2024 spring
      Jaan Kalda, LT - Department of Cybernetics
      Estonian
        2022/2023 spring
        Jaan Kalda, LT - Department of Cybernetics
        Estonian
          2021/2022 spring
          Jaan Kalda, LT - Department of Cybernetics
          Estonian
            YFX0520 Thermodynamics Methods of evaluation.pdf 
            2020/2021 spring
            Jaan Kalda, LT - Department of Cybernetics
            Estonian
              YFX0520 Thermodynamics Methods of evaluation.pdf 
              2018/2019 spring
              Jaan Kalda, LT - Department of Cybernetics
              Estonian
                YFX0520 Thermodynamics Methods of evaluation.pdf 
                2017/2018 spring
                Jaan Kalda, LT - Department of Cybernetics
                Estonian
                  YFX0520 Thermodynamics Methods of evaluation.pdf 
                  Course description in Estonian
                  Course description in English