course aims in Estonian
Aine eesmärk on anda ülevaade üldrelatiivsusteooria ja elektrodünaamika põhimõtetest ja tähtsamatest rakendustest; õppida tundma aegruumi kõverusesga seonduvaid geomeetrilisi objekte; tutvuda erirelatiivsusteooria aluste ja olilisemate seaduspärasustega.
course aims in English
The aim of this course is to give an overview of the principles and most important applications of general relativity and electrodynamics; get to know geometric objects related to the curvature of space-time; familiarize with the foundations and most important laws of the special theory of relativity.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- seostab üldrelatiivsusteooria aluseid looduses esinevate protsessidega;
- rakendab vastavat matemaatilist aparatuuri;
- kasutab neid teadmisi olulisemates praktilistes rakendustes.
learning outcomes in the course in Eng.
After completing the course, the student:
- relates the foundations of general relativity to processes occurring in nature;
- can apply its basic mathematical apparatus;
- uses the obtained knowledge in practical applications.
brief description of the course in Estonian
Relatiivsusteooria postulaadid. Lorentzi teisendused. Relativistlik mass, energia ja impulss. Relativistlikud paradoksid. Gravitatsiooni sissetoomine relatiivsusteooriasse ekvivalentsuprintsiibi kaudu. Tensorarvutuse elemendid.Tehted tensoritega. Kovariantsed ja kontravariantsed tensorid. Tensorite teisenemine koordinaatteisendustel. Invariandid. Euleri-Lagrange´i formalism. Meetriline tensor. Geodeetiline trajektoor. Christoffeli sümbolid. Vektorite rööpülekanne. Ühtlaselt kiirenevad taustsüsteemid. Koordinaadistik ühtlaselt kiirenevas taustsüsteemis ja sellega kaasnevad telativistlikud efektid (hüperboolne liikumine ja ringliikumine). Energia-impulsitensor, selle näited matriaalses keskkonnas. Kõvera aegruumi geomeetria. Kõverustensor. Einsteini väljavõrrandid. Schwarzschildi lahend. Vaba langemine Schwarzschildi aegruumis. Gravitasioonilained.
brief description of the course in English
The postulates of the theorey of relativity. Lorentz transformations. Relativistic mass, energy and momentum. The paradoxes of relativity. Introducing of gravity via the equivalence principle. The elements of the tensor calculus. Tensor operations. Covariant and contravariant tensors. Transformation of tensors. Invariants. Euleri-Lagrange formalism. Metric tensor. Geodesic path. Christoffel symbols. Parallel displacement of vectors. Uniformly accelerated frames of reference. The relativistic effects in uniformly accelerated systems (hyperbolic and rotational motion). Energy-momentum tensor. The material medium. Geometry of the curved spacetime. The curvature tensor. Einstein´s field equations. Schwarzschild solution. Free fall in the Schwarzschild spacetime. Gravitational waves.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
R.A.Mould, “Basic realtivity”. C.W.Misner, K.S.Thorne, J.A.Wheeler, “Gravitation”.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lecturer in charge
Tanel Mullari, dotsent (LT - küberneetika instituut)