course aims in Estonian
Kursuse eesmärk on anda ülevaade Python programmeerimiskeelest ja selle kasutamisest teadusarvutusteks.
course aims in English
The aim of the course is to provide overview of Python programming language and its use in scientific computing.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- kasutab Pythoni arenduse häid tavasid;
- kasutab Pythoni paketihaldusüsteemi;
- koostab programme, kasutades objektorienteeritud lähenemist;
- kasutab SciPy, NumPy ja matplotlib pakette.
learning outcomes in the course in Eng.
After completing this course, the student:
- uses established Python development style and code handling approaches in the work;
- uses Python packaging system;
- creates Python programs using object oriented approach;
- uses SciPy, NumPy, and matplotlib packages.
brief description of the course in Estonian
Programmide arendamine, kasutades versioonihaldustarkvara git. PEP 8 stiil. Objektorienteeritud programmeerimise alused. Pythoni paketihaldus PyPi. Andmete sisselugemine ning salvestamine (CSV, JSON, YAML, HDF5). Käsureast parameetrite määramine. Lineaaralgebra. Harilike diferentsiaalvõrrandite süsteemi lahendamine. Katseandmete lähendamine funktsiooniga. Töö andmebaasidega. Graafikud.
brief description of the course in English
Development of the programs using version control system git. PEP 8 coding style. Object oriented programming. Python packages and PyPi. Data input and storage (CSV, JSON, YAML, HDF5). Specifying program parameters from command line. Linear algebra. Solving system of ordinary differential equations. Fitting experimental data with a function. Work with the databases. Plotting.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
1. Qingkai Kong, Timmy Siauw, Alexandre Bayen. Python Programming And Numerical Methods: A Guide For Engineers And Scientists. 2020
2. Allen B. Downey. Think Python 2e. 2016
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):