Operations Research
BASIC DATA
course listing
A - main register
course code
YMR0050
course title in Estonian
Operatsioonianalüüs
course title in English
Operations Research
course volume CP
4.00
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Linear Algebra (YMA3710)
Prerequisite 2
Mathematical Analysis II (YMM3740)
Study programmes that contain the course
code of the study programme version
course compulsory
IAIB25/25
no
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Omandada teadmisi operatsioonianalüüsi ülesannetest ja meetoditest. Õppida lahendama lineaarse ja mittelineaarse planeerimise ülesandeid.
course aims in English
To obtain a knowledge about problems and methods of operations research. To learn to solve problems of linear and nonlinear programming.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
• tunneb operatsioonianalüüsi põhimõisteid ja -seoseid;
• teab kitsendusteta ja kitsendustega optimeerimisülesannete lokaalsete ekstreemumite tarvilikke ja piisavaid tingimusi ja oskab neid rakendada konkreetsete ülesannete korral;
• oskab kasutada simpleksmeetodit lineaarplaneerimise ülesannete lahendamisel;
• teab peamisi matemaatilise planeerimise liike: kumer, diskreetne ja stohhastiline planeerimine, multikriteriaalne ja multiekstremaalne optimeerimine;
• tunneb kumera planeerimise põhimeetodeid, Lagrange'i kordajate meetodit, trahvi- ja barjäärifunktsioonide meetodit ning oskab neid kasutada ülesannete lahendamisel;
• omab teadmisi optimaalse juhtimise ülesannetest.
learning outcomes in the course in Eng.
Permeator of the course:
• knows the main concepts and issues of operations research;
• knows necessary and sufficient conditions of optimality in unconstrained and constrained optimization problems and is able to apply them for particular problems;
• is able to use the simplex method to solve problems of linear programming;
• knows the main subdivisions of mathematical programming: convex, discrete and stochastic programming, multicriterial and multiekstremal optimization;
• knows the main methods of convex progamming, method of Lagrange multipliers, penalty and barrier methods and is able to use them to solve problems;
• has a knowledge about the problems of optimal control;
brief description of the course in Estonian
Operatsioonianalüüsi aine põhiküsimused. Kitsendusteta ja kitsendustega optimeerimisülesannete lokaalse ekstreemumi tarvilikud ja piisavad tingimused, kumer analüüs ja subdiferentseeruvus. Lineaarplaneerimine. Simpleksmeetod ja tema erijuhud. Duaalsus. Matemaatiline planeerimine ja tema alajaotused (mittelineaarne, kumer, diskreetne ja stohhastiline planeerimine, multikriteriaalne ja multiekstremaalne optimeerimine jne.). Kumera planeerimise põhimeetodid. Lagrange'i kordajate meetod ja tema seos trahvi- ja barjäärifunktsioonide meetodiga. Optimaalse juhtimise ülesanded. Maksimumi printsiip.
brief description of the course in English
Basic concepts of operations research. Necessary and sufficient conditions of optimality for unconstrained and constrained optimization problems. Convex analysis and sub-differentiability. Linear programming. Simplex method and its modifications. Duality. Mathematical programming and its subdivisons (non-linear, convex, discrete, stochastic, multicriterial and multiextremal optimization). Kuhn-Tucker conditions. Basic methods for convex programming problems. Method of Lagrange multipliers. Augmented Lagrangian method, penalty and barrier method. Problems of optimal control. Maximum principle.
type of assessment in Estonian
Õppeaine lõpphinne kujuneb kahe komponendi: eksami, mis koosneb teooria osast ja ülesannetest, ning iseseisva laboratoorse töö punktide summeerimise kaudu. Teooria ja ülesannete osa on võimalik õppejõuga kokkuleppel sooritada osade kaupa ka semestri jooksul.
type of assessment in English
The final grade of the course is computed via sum of credits of two components: an exam, that contains theory and excercises, and a home laboratory assignment. In agreement with the professor, the theory and excercises may be performed step-by-step during the semester.

independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes – 80 tundi, kaugõppes – 100 tundi
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems. Learning capacities of the subject in the stationary learning is 80 hours and in the extramural learning 100 hours.
study literature
Kohustuslik:
• Õppejõu konspekt
• Kaasik, Ü., Kivistik, L. Operatsioonianalüüs. Tallinn, Valgus, 1982.
Soovituslik:
• Janno, J. Arvutusmeetodid. TTÜ kirjastus, 2008.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Mati Väljas, LT - Department of Cybernetics
Estonian
    display more
    2024/2025 autumn
    Mati Väljas, LT - Department of Cybernetics
    Estonian
      2023/2024 autumn
      Mati Väljas, LT - Department of Cybernetics
      Estonian
        2022/2023 autumn
        Mati Väljas, LT - Department of Cybernetics
        Estonian
          2021/2022 autumn
          Mati Väljas, LT - Department of Cybernetics
          Estonian
            2020/2021 autumn
            Mati Väljas, LT - Department of Cybernetics
            Estonian
              2019/2020 autumn
              Mati Väljas, LT - Department of Cybernetics
              English, Estonian
                2018/2019 autumn
                Mati Väljas, LT - Department of Cybernetics
                English, Estonian
                  2017/2018 autumn
                  Mati Väljas, LT - Department of Cybernetics
                  Estonian
                    2016/2017 autumn
                    Mati Väljas, LT - Department of Cybernetics
                    Estonian
                      2015/2016 autumn
                      Mati Väljas, LT - Department of Cybernetics
                      Estonian
                        2014/2015 autumn
                        Mati Väljas, LT - Department of Cybernetics
                        Estonian
                          2013/2014 spring
                          Mati Väljas, LT - Department of Cybernetics
                          Estonian
                            2013/2014 autumn
                            Mati Väljas, LT - Department of Cybernetics
                            Estonian
                              2012/2013 autumn
                              Mati Väljas, LT - Department of Cybernetics
                              Estonian
                                2011/2012 autumn
                                Mati Väljas, LT - Department of Cybernetics
                                Estonian
                                  2010/2011 autumn
                                  Mati Väljas, LT - Department of Cybernetics
                                  Estonian
                                    Course description in Estonian
                                    Course description in English