Mathematical Analysis II
BASIC DATA
course listing
A - main register
course code
YMX0082
course title in Estonian
Matemaatiline analüüs II
course title in English
Mathematical Analysis II
course volume CP
4.00
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Mathematical Analysis I (YMX0081)
The course is a prerequisite
Electromagnetism (YFX0511)
Study programmes that contain the course
code of the study programme version
course compulsory
YAFB02/25
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
- Anda mitme muutuja funktsiooni diferentsiaal- ja integraalarvutuse teoreetilised alused ning esitada arv- ja funktsionaalridade põhiprobleemide praktilised rakendused.
- Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid ning näidata võimalikke rakendusi praktikas ja teistes teadusharudes.
- Harjutada üliõpilasi matemaatilise sümboolikaga.
course aims in English
- To give the theoretical base of differential and integral calculus for functions of several variables; to give knowledge about the theory of number and functional series and their applications.
- To teach to solve main problems related to the theory mentioned above and to show possible applications in practice and other disciplines.
- To train the students in mathematical thinking and symbolism.
learning outcomes in the course in Est.
Aine läbinud üliõpilane peab oskama:
- rakendada Taylori valemit;
- kasutada funktsiooni piirväärtust ja tuletisi funktsiooni uurimisel;
- uurida ühe ja mitme muutuja funktsiooni ekstreemume;
- kasutada rakendustes määratud integraali ja päratut integraali;
- uurida arv- ja astmeridade koonduvust ja arendada funktsiooni astmeritta ja kasutada astmeridu rakendustes;
- arendada funktsiooni Fourier` ritta, leida funktsiooni Fourier` teisendust ning kasutada Fourier` ridu ja Fourier` teisendusi;
- arvutada kordseid, joon- ja pindintegraale ning kasutada neid rakendustes;
learning outcomes in the course in Eng.
Having finished the study of the subject a student has to be able:
- to apply Taylor's formula and to investigate extremums of function;
- to find improper integral;
- to investigate the convergence of number and functional series;
- to find Fourier-series expansions, Fourier transforms of function and to apply Fourier series and transforms;
- to evaluate multiple, line and surface integrals and to use these integrals in applications;
- to check the correctness of results obtained by solution of practical exercises.
brief description of the course in Estonian
Taylori valem. Ekstreemumid. Joone puutuja ja normaalsirge. Pinna puutujatasand ja normaalsirge. Päratu integraal ja selle rakendused. Arvread. Astmeread. Fourier' rida. Fourier' teisendus. Kahekordsed integraalid ja nende arvutamine. Muutujate vahetus kordses integraalis. Joonintegraalid, nende omadused ja arvutamine. Greeni valem. Pindintegraalid, nende omadused ja arvutamine. Joon- ja pindintegraalide rakendused. Väljateooria põhimõisted.
brief description of the course in English
Taylor's formula. Extremums of function. Tangent plane to a surface and perpendicular line. Improper integrals and applications. Number series. Power series. Fourier' series. Fourier' transforms. Double and triple integrals, their properties and evaluation. Transformations of multiple integrals. Line integrals, their properties and evaluation. Green's formula. Surface integrals, their properties and evaluation. Applications of line and surface integrals. Main notions of field theory.
type of assessment in Estonian
Teadmiste kontroll toimub eksamil. Üliõpilane peab eksamile pääsemiseks olema lahendanud kodused ülesanded ja sooritanud kaks kontrolltööd (kumbki vähemalt 51-le punktile). Kodused ülesanded annab ja kontrolltööd viib läbi harjutustunde teostav õppejõud. Eksamil kontrollitakse üliõpilase teoreetilisi teadmisi: lihtsamate faktide tõestusi, mõistete definitsioone ja vaadeldavate matemaatiliste objektide omadusi. Samuti tuleb eksamil lahendada ülesandeid. Eksamihinne kujuneb eksamiküsimuste vastustega saadud punktide alusel. Kokkuleppel õppejõuga võib ainet sooritada osade kaupa semestri jooksul.
type of assessment in English
The control of knowledges takes place in examinations at the end of a term. For the getting a permission to an examination it is necessary to solve home-works and perform two tests (getting for each of them at least 51 points). Home-works and tests are carried out by an assistent. In examination the following knowledges are checked: proofs of elementary facts, the main notions and the main properties of considerable mathematical objects. Also is necessary to solve some problems. The lecturer has a right to examine students by parts during a term. The final grade of the course will be computed as a weighted mean of the tests and the exam.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes - 80 tundi, kaugõppes - 100 tundi.
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems. Learning capacities of the subject in the stationary learning is 80 hours and in the distance learning 100 hours.
study literature
Põhiõpik:
Tammeraid, I. Matemaatiline analüüs I, II. Tallinn, TTÜ kirjastus, 2003.
Täiendav kirjandus:
Piskunov, N. Diferentsiaal- ja integraalarvutus I, II. Tallinn, 1981, 1983.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
8.0
practices
0.0
practices
0.0
exercises
2.0
exercises
10.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 spring
Gert Tamberg, LT - Department of Cybernetics
Estonian
    YMX0082Matemaatiline_analuus_II_ENG.pdf 
    display more
    2024/2025 spring
    Gert Tamberg, LT - Department of Cybernetics
    Estonian
      YMX0082Matemaatiline_analuus_II_ENG.pdf 
      2023/2024 spring
      Gert Tamberg, LT - Department of Cybernetics
      Estonian
        2023/2024 autumn
        Gert Tamberg, LT - Department of Cybernetics
        Estonian
          2022/2023 spring
          Gert Tamberg, LT - Department of Cybernetics
          Estonian
            2021/2022 spring
            Gert Tamberg, LT - Department of Cybernetics
            Estonian
              YMX0082Matemaatiline_analuus_II_ENG.pdf 
              2020/2021 spring
              Gert Tamberg, LT - Department of Cybernetics
              Estonian
                YMX0082Matemaatiline_analuus_II_ENG.pdf 
                2019/2020 spring
                Gert Tamberg, LT - Department of Cybernetics
                Estonian
                  YMX0082Matemaatiline_analuus_II_ENG.pdf 
                  2018/2019 spring
                  Gert Tamberg, LT - Department of Cybernetics
                  Estonian
                    YMX0082Matemaatiline_analuus_II_ENG.pdf 
                    2017/2018 spring
                    Gert Tamberg, LT - Department of Cybernetics
                    Estonian
                      YMX0082Matemaatiline_analuus_II_ENG.pdf 
                      Course description in Estonian
                      Course description in English