Statistical methods in applied physics
BASIC DATA
course listing
A - main register
course code
YMX0090
course title in Estonian
Statistilised meetodid rakendusfüüsikas
course title in English
Statistical methods in applied physics
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Probability Theory and Mathematical Statistics (YMX0030)
Study programmes that contain the course
code of the study programme version
course compulsory
YAFB02/25
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Omandada teadmisi rakendusfüüsikas kasutatavate juhuslikkust sisaldavate ja statistiliste meetodite kohta.
course aims in English
To acquire knowledge about stochastic and statistical methods in applied physics.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
• tunneb Monte Carlo meetodeid;
• tunneb metaheuristilisi optimeerimismeetodeid;
• tunneb statistilisi meetodeid suurandmete käitlemisel;
• tunneb statistilisi meetodeid signaalitöötluses;
• oskab rakendada statistilisi meetodeid füüsika- jt rakenduslike ülesannete lahendamisel;
learning outcomes in the course in Eng.
Student having passed the course

• knows Monte Carlo methods;
• knows metaheuristic optimization methods;
• knows statistical methods in bigdata analysis;
• knows statistical methods in signal processing;
• is able to use statistical methods to solve physical and other applied problems.
brief description of the course in Estonian
Monte Carlo meetodid. Metaheuristilised optimeerimismeetodid. Statistilised meetodid suurandmete analüüsis (klaster- ja faktoranalüüs). Signaalitöötluse statistilised meetodid.
brief description of the course in English
Monte Carlo methods. Metaheuristic optimizations methods. Statistical methods in bigdata analysis (e.g. cluster and factor analysis) and signal processing.
type of assessment in Estonian
Kursuse jooksul tuleb sooritada 2 iseseisvat tööd aines läbivõetavate meetodite rakendamise kohta. Mõisteid ja seoseid vastatakse eksamil. Kontrolltööde sooritamine on eksamieelduseks. Hinne arvutatakse iseseisvate tööde ja eksamitöö tulemuste keskmisena.
type of assessment in English
Student has to implement 2 inependent homeworks where he/she applies the methods considered in the course. Independent works are a prerequisity for the exam. Concepts and relations are asked on the exam. The final grade of the course is computed as an average of the credits of the works and the exam.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste mõistete ja seoste läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes – 100 tundi, kaugõppes – 150 tundi
independent study in English
The self-dependent work of students consists in the learning of the theoretical concepts and relations of the subject and solving homeworks. Learning capacities of the subject in the stationary learning is 100 hours and in the extramural learning 150 hours.
study literature
1. T. Kollo, Monte carlo meetodid, TÜ, 2004.
2. S. Koskel, E. Tiit, P. Arandi, Diskriminantanalüüs, TÜ, 1998.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
8.0
practices
0.0
practices
0.0
exercises
2.0
exercises
8.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Margus Pihlak, LT - Department of Cybernetics
Estonian
    Statistilised meetodid rakendusfuusikas hindamiskriteeriumid (inglise).pdf 
    display more
    2024/2025 autumn
    Margus Pihlak, LT - Department of Cybernetics
    Estonian
      Statistilised meetodid rakendusfuusikas hindamiskriteeriumid (inglise).pdf 
      2023/2024 autumn
      Margus Pihlak, LT - Department of Cybernetics
      Estonian
        2022/2023 autumn
        Margus Pihlak, LT - Department of Cybernetics
        Estonian
          2021/2022 autumn
          Margus Pihlak, LT - Department of Cybernetics
          Estonian
            Statistilised meetodid rakendusfuusikas hindamiskriteeriumid (inglise).pdf 
            2019/2020 spring
            Margus Pihlak, LT - Department of Cybernetics
            Estonian
              Statistilised meetodid rakendusfuusikas hindamiskriteeriumid (inglise).pdf 
              2018/2019 spring
              Margus Pihlak, LT - Department of Cybernetics
              Estonian
                Statistilised meetodid rakendusfuusikas hindamiskriteeriumid (inglise).pdf 
                Course description in Estonian
                Course description in English