Stochastic Modelling
BASIC DATA
course listing
A - main register
course code
YMX8200
course title in Estonian
Stohhastiline modelleerimine
course title in English
Stochastic Modelling
course volume CP
-
ECTS credits
3.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
LAFM23/25
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on anda süvendatud ülevaade uusimatest suundadest stohhastiliste protsesside modelleerimisel ja matemaatilises statistikas ning harjutada üliõpilasi matemaatilise mõtlemise ja sümboolikaga.

course aims in English
The aim of this course is to give a deeper overview about new developments in modelling of stochastic processes and mathematical statistic and train students in mathematical thinking and symbolism.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- korrastab andmebaase, koostab objekt-tunnus maatriksit ja kasutab statistiku ning hinnangu mõisteid ja hinnangu omadusi;
- teeb regressioon-, korrelatsioon- ja dispersioonanalüüsi;
- koostab teststatistikuid ja kontrollib statistilisi hüpoteese;
- kasutab mitmemõõtmelise statistilise analüüsi põhimõisteid ja maatriksalgebrat regressioon- ja dispersioonanalüüsis;
- kasutab juhuslike arvude generaatoreid, analüüsib juhuslikke protsesse, sh Markovi ahelaid;
- analüüsib aegridu.
learning outcomes in the course in Eng.
After completing this course, the student:
- organizes databases, composes design matrices and uses the concepts of the statistic and the estimator and properties of the estimator;
- performs regression, correlation and dispersion analysis;
- composes test statistics and controls statistical hypotheses;
- uses main concepts of multidimensional statistical analysis and matrix algebra in regression and dispersion analyses;
- uses random number generators, analyses random processes, incl. Markov chains;
- analyses time series.
brief description of the course in Estonian
Andmebaaside koostamine. Statistik, tema omadused. Piisavad statistikud. Regressioon- ja dispersioonanalüüs. Faktoranalüüs. Diskriminantanalüüs. Lineaarse korrelatsiooniakordaja puudused. Astakkorrelatsioonid. Üldistatud lineaarsed mudelid. Mitteparameetrilise statistika elemente. Maatriksalgebra rakendusi regressioon- ja dispersioonanalüüsis. Juhuslike arvude generaatorid. Juhuslikud protsessid. Markovi ahelad, selle rakendused. Poissoni protsessid. Markovi ahelad statistikas. Aegridade analüüs. Stohhastilise programmeerimise elemente.
brief description of the course in English
The composition of data bases. Statistic, its properties. Sufficient statistics. Regressional analyses. Analyses of Variance (ANOVA). Factor analyses. Disciminant analyses. The disadvantages of linear correlation coefficient. Rank correlations. Generalized linear models. The elements of nonparametric statistics. Applications of matrix algebra on regression analyses and on analyses of variance. Random number generators. Random processes. Markov Chains. Poisson processes. Markov Chain Monte Carlo (MCMC). Time series analyses. The elements of stochastic programming.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Tõnu Kollo, Monte Carlo meetodid, Tartu 2004.
G. McPherson, Statistics in Scientific Investigation. Its Basis, Applications and Interpretation, Springer, Berlin, 1990.
study forms and load
daytime study: weekly hours
2.0
session-based study work load (in a semester):
lectures
1.0
lectures
-
practices
0.0
practices
-
exercises
1.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Margus Pihlak, LT - Department of Cybernetics
Estonian
    display more
    2024/2025 autumn
    Margus Pihlak, LT - Department of Cybernetics
    Estonian
      Course description in Estonian
      Course description in English