Data Mining and Network Analysis
BASIC DATA
course listing
A - main register
course code
IDN0110
course title in Estonian
Andmekaevandamine ja võrgustike analüüs
course title in English
Data Mining and Network Analysis
course volume CP
4.00
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
IAXD22/22
no
Structural units teaching the course
IT - Department of Software Science
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Tutvustada andmekaevandamise ning võrgustike analüüsi põhimõisteid ja meetodeid
course aims in English
To introduce the main concepts and methods of data mining and network analysis.
learning outcomes in the course in Est.
Üliõpilane:
Tunneb andmekaevandamise põhimõisteid: atribuut, tunnus, kauguse ja sarnasuse funktsioon jne.
Tunneb andmekaevandamise põhiülesandeid : Klasterdamine, klassifitseerimine, võõrväärtuste analüüs ja assotsiatiivsete mustrite analüüs.
Tunneb kõigi põhiülesannete matemaatilisi aluseid.
Oskab andmekaevandamise probleeme formaalselt püstitada.
Oskab valida andmekaevandamise probleemi lahendamiseks sobiva meetodi.
Tunneb andmekaevandamise põhimeetodite algoritme ja oskab neid implementeerida.
Oskab tulemusi interpreteerida.

learning outcomes in the course in Eng.
The student:
Is familiar with main notions used in datamining such as Attribute, feature, distance/ similarity function.
Understands main problems of the data mining area: clustering, classification, outlier analysis and associative patterns mining.
Familiar with mathematical foundations of each problem.
Is able to formally state data mining problem.
Able to choose methods to solve given problem.
Able to program the algorithms of most popular methods.
Able to interpret achieved results.
brief description of the course in Estonian
Õppetöö on korraldatud loengute ja harjutustundide vormis. Loengute jooksul käsitletakse andmekaevandamise teoreetilised aspekte, nende matemaatilisi ja algoritmilisi aluseid.
Harjutustundides on tähelepanu all põhimeetodite ja algoritmide programmerimine „R“ keeles.
Andmekaevandamise põhimõisted ja probleemid: Kauguse ja sarnasuse funktsioon, klasterdamine, klassifitseerimine, võõrväärtuste analüüs ja assotsiatiivsete mustrite analüüs on kaetud aine esimeses osas. Aine teine osa on pühendatud mõistete ja meetodite adapteerimisele tüüpülesannete lahendamiseks: ruumiandmede kavandamine, graafiandmete kaevandamine ja sotsiaalvõrugustike analüüs, andmevoogude kaevandamine.
brief description of the course in English
Teaching is performed by means of lectures and practices. Lectures are devoted to the theory of data mining. Practices are conducted in the computer class, where implementation of main algorithms is discussed using “R” language. The course consists of two parts. First part is devoted to the main notions and problems of data mining. Main notions and concept, such as, distance function, cluster analysis, classification, outlier analysis, associative pattern mining are covered. The second part of the course is devoted to the application of this knowledge to such problems as: spatial data mining, stream data mining, graph data mining and social networks analysis.
type of assessment in Estonian
valikuliste iseseisvate tööde ning grupitööde summeerimine
type of assessment in English
adding the results of selected individual and group assignments
independent study in Estonian
Õppematerjalide lugemine, iseseisvate tööde koostamine
independent study in English
Reading study materials, preparing individual assignments
study literature
Title Data Mining: The Textbook
Author Charu C. Aggarwal

Edition illustrated
Publisher Springer International Publishing, 2015
ISBN 3319141414, 9783319141411

study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2022/2023 spring
Sven Nõmm, IT - Department of Software Science
English, Estonian
    display more
    2020/2021 autumn
    Sven Nõmm, IT - Department of Software Science
    English
      2018/2019 autumn
      Sven Nõmm, IT - Department of Software Science
      English
        2017/2018 autumn
        Sven Nõmm, IT - Department of Software Science
        English
          Course description in Estonian
          Course description in English